

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

(A State Government University)

B. Tech- 2024

FIRST YEAR SYLLABUS
(GROUP C)

SEMESTER 1 GROUP C

SEMESTER S1

MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE - 1

(Groups B & C)

Course Code	GYMAT101	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic knowledge in single variable calculus and matrix operations.	Course Type	Theory

Course Objectives:

- 1. To provide a comprehensive understanding and basic techniques of matrix theory to analyze linear systems.
- 2. To offer advanced knowledge and practical skills in solving second-order ordinary differential equations, applying Laplace transforms, and understanding Fourier series, enabling students to analyze and model dynamic systems encountered in engineering disciplines effectively.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Linear systems of equations: Gauss elimination, Row echelon form, Linear Independence: rank of a matrix, Solutions of linear systems: Existence, Uniqueness (without proof), The matrix Eigen Value Problem, Determining Eigen values and Eigen vector, Diagonalization of matrices. (Text 1: Relevant topics from sections 7.3, 7.4, 7.5, 8.1, 8.4)	9

B.Tech 2024 -S1/S2

	Homogeneous linear ODEs of second order, Superposition principle,	21/22
	General solution, Homogeneous linear ODEs of second order with	
	constant coefficients (Method to find general solution, solution of linear	
	Initial Value Problem). Non homogenous ODEs (with constant	
	coefficients) - General solution, Particular solution by the method of	
	undetermined coefficients (Particular solutions for the functions	9
2	$ke^{\gamma x}$, kx^n , $kcos\omega x$, $ksin\omega x$, $ke^{\alpha x}cos\omega x$, $ke^{\alpha x}sin\omega x$), Initial value	
	Problem for Non-Homogeneous Second order linear ODE(with constant	
	coefficients), Solution by variation of parameters (Second Order).	
	(Text 1: Relevant topics from sections 2.1, 2.2, 2.7, 2.10)	
	Laplace Transform, Inverse Laplace Transform, Linearity property, First	
	shifting theorem, Transform of derivatives, Solution of Initial value	
	problems by Laplace transform (Second order linear ODE with constant	
	coefficients with initial conditions at t=0 only), Unit step function, Second	
_	shifting theorem, Dirac delta function and its transform (Initial value	9
3	problems involving unit step function and Dirac delta function are	
	excluded), Convolution theorem (without proof) and its application to	
	finding inverse Laplace transform of products of functions.	
	(Text 1: Relevant topics from sections 6.1, 6.2, 6.3, 6.4, 6.5)	
	Taylor series representation (without proof, assuming the possibility of	
	power series expansion in appropriate domains), Maclaurin series	
	representation, Fourier series, Euler formulas, Convergence of Fourier	9
	series (Dirichlet's conditions), Fourier series of 2π periodic functions,	
4	Fourier series of 2 <i>l</i> periodic functions, Half range sine series expansion,	
	Half range cosine series expansion.	
	(Text 1: Relevant topics from sections 11.1, 11.2, Text 2: Relevant	
	topics from section 10.8)	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	Two questions will be given from each	
• Total of 8 Questions,	module, out of which 1 question should	
each carrying 3 marks	beanswered.	
	Each question can have a maximum of	
(8x3 = 24marks)	3 sub divisions.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Solve systems of linear equations and diagonalize matrices.	К3
CO2	Solve homogeneous and non-homogeneous linear differential equation with constant coefficients.	К3
CO3	Compute Laplace transform and apply it to solve ODEs arising inengineering.	К3
CO4	Determine the Taylor series and evaluate Fourier series expansion fordifferent periodic functions.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	_	-	2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition,2016		
2	Calculus	H.Anton,I.Biven,S.Davis	Wiley	12 th edition,2024		

			D.1ech 2024	51/52		
	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Thomas' Calculus	Maurice D. Weir, Joel Hass, Christopher Heil, Przemyslaw Bogacki	Pearson	15 th edition, 2023		
2	Essential Calculus	J. Stewart	Cengage	2 nd edition, 2017		
3	Elementary Linear Algebra	Howard Anton, Chris Rorres	Wiley	11 th edition, 2019		
4	Bird's Higher Engineering Mathematics	John Bird	Taylor & Francis	9 th edition, 2021		
5	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023		
6	Calculus	H. Anton, I. Biven, S.Davis	Wiley	12 th edition, 2024		
7	Signals and Systems	Simon Haykin, Barry Van Veen	Wiley	2 nd edition, 2002		

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/111/107/111107164/				
2	https://archive.nptel.ac.in/courses/111/104/111104031/				
3	https://archive.nptel.ac.in/courses/111/106/111106139/				
4	https://archive.nptel.ac.in/courses/111/101/111101164/				

SEMESTER S1/S2

PHYSICS FOR PHYSICAL SCIENCE AND LIFE SCIENCE

(Groups C & D)

Course Code	GZPHT121	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory + Lab

Course Objectives:

- 1. To provide students with a solid background in the fundamentals of Physics and impart this knowledge in Physical Science and Life Science disciplines.
- **2.** To develop scientific attitudes and enable students to correlate Physics concepts with their core programs.
- 3. To equip students with practical knowledge that complements their theoretical studies and develop their ability to create practical applications and solutions in engineering based on their understanding of Physics.

SYLLABUS

Module	Syllabus Description	Contact
No.	Synabus Description	Hours
	Laser & Fibre Optics	
	Optical processes - Absorption-Spontaneous emission and stimulated	
	emission, Principle of laser - conditions for sustained lasing - Population	
1	inversion- Pumping- Metastable states, Basic components of laser -	
	Active medium - Optical resonant cavity, Construction and working of	
	Ruby laser and CO2 laser, Construction and working Semiconductor	9
	laser (qualitative), Properties of laser, Applications of laser.	
	Optic fibre-Principle of propagation of light, Types of fibres-Step index	
	and Graded index fibres - Multimode and single mode fibers, Acceptance	
	angle, Numerical aperture -Derivation, Applications of optical fibres -	
	Fibre optic communication system (block diagram)	
	Interference and Diffraction	
	Introduction, Principle of super position, Constructive and destructive	
	interference, Optical path, Phase difference and path difference, Cosine	
2	law- reflected system- Condition for constructive and destructive	
	interference, Colours in thin films, Newton's Rings-Determination of	
	refractive index of transparent liquids and wavelength, Air wedge-	9
	Measurement of thickness of thin sheets.	
	Diffraction-types of diffraction, Diffraction due to a single slit, Diffraction	
	grating – Construction - grating equation, Dispersive and Resolving Power	
	(qualitative).	

	Quantum Mechanics	
	Introduction, Concept of uncertainty and conjugate observables	
3	(qualitative), Uncertainty principle (statement only), Application of	
	uncertainty principle- Absence of electron inside nucleus - Natural line	0
	broadening, Wave function – properties - physical interpretation,	9
	Formulation of time dependent and time independent Schrodinger	
	equations, Particle in a one- dimensional box - Derivation of energy eigen	
	values and normalized wave function, Quantum Mechanical Tunnelling	
	(qualitative)	
	Waves & Acoustics	
	Waves- transverse and longitudinal waves, Concept of frequency,	
	wavelength and time period (no derivation), Transverse vibrations in a	
4	stretched string- derivation of velocity and frequency - laws of transverse	
	vibration.	9
	Acoustics- Reverberation and echo, Reverberation time and its	
	significance - Sabine's Formula, Factors affecting acoustics of a	
	building. Ultrasonics-Piezoelectric oscillator, Ultrasonic diffractometer,	
	SONAR, NDT-Pulse echo method, medical application-Ultrasound	
	scanning (qualitative)	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from	Each question carries 9 marks.	
eachmodule.	Two questions will be given from each	
• Total of 8 Questions,	module, outof which 1 question should be	60
eachcarrying 3 marks	answered.	60
	• Each question can have a maximum of 3	
(8x3 =24marks)	subdivisions.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the basic principles and properties of laser and optic fibers.	К2
CO2	Describe the phenomena of interference and diffraction of light.	K2
CO3	Describe the behaviour of matter in the atomic and subatomic level through the principles of quantum mechanics.	К2
CO4	Apply the knowledge of waves and acoustics in non-destructive testing and in acoustic design of buildings.	К3
CO5	Apply basic knowledge of principles and theories in physics to conduct experiments.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3											3
CO3	3											3
CO4	3	3										3
CO5	3	3			3				2			3

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	A Textbook of EngineeringPhysics	M N Avadhanulu, P G Kshirsagar & TVS ArunMurthy	S Chand & Co.	2 nd Edition, 2019					
2	Engineering Physics	H K Malik , A.K. Singh,	McGraw Hill Education	2 nd Edition, 2017					
3	Optics	Ajoy Ghatak	Mc Graw Hill Education	6 th Edition, 2017					

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Engineering Physics	G Vijayakumari	Vikas Publications	8 th Edition, 2014				
2	Concepts of Modern Physics	Arthur Beiser	Tata McGraw Hill Publications	6th Edition 2003				
3	Engineering Physics	Aruldhas G.	PHI Pvt. Ltd	2 nd Edition, 2015				
4	Fiber Optic Communications	Gerd Keiser	Springer	2021				
5	A Text Book of Engineering physics	I. Dominic, A. Nahari	OWL Publications	2 nd Edition, 2016				
6	Advanced Engineering Physics	Premlet B	Phasor Books					
7	Engineering Physics	Rakesh Dogra	Katson Books	1 st Edition, 2019				

Video Links (NPTEL, SWAYAM)					
Module No	Link ID				
1	https://nptel.ac.in/courses/115102124 https://nptel.ac.in/courses/104104085				
2	https://nptel.ac.in/courses/115105537				
3	https://nptel.ac.in/courses/115102023 https://nptel.ac.in/courses/115101107				
4	https://nptel.ac.in/courses/112104212 https://nptel.ac.in/courses/124105004				

1. Continuous Assessment (10 Marks)

i. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that testunderstanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

ii. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, andtroubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

iii. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Properdocumentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record andmaintaining a well-organized fair record.

iv. Viva Voce (3 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, andrecord are the average of all the specified experiments in the syllabus.

2. Evaluation Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure andunderstanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment orprogramming task

2. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

 Proficiency in answering questions related to theoretical and practical aspects of the subject.

Experiment List

Experiment No.	Experiments (Minimum 10 Experiments)
1	Optical fiber characteristics- Measurement of Numerical aperture.
2	Determination of wavelength of Laser using diffraction grating.
3	Measure the wavelength of Laser using a millimetre scale as a grating.
4	Determination of wavelength of a monochromatic light using Newton's Rings method.
5	Determination of diameter of wire or thickness of thin sheet using Air wedge method.
6	Determination of slit width (diffraction due to a single slit).
7	Measure wavelength of light source using diffraction grating.
8	Determination of resolving power and dispersive power of grating.
9	Characteristics of LED.
10	CRO basics-Measurement of frequency and amplitude of wave forms.
11	Solar Cell- I V and Intensity Characteristics.
12	Melde's experiment- Frequency calculation in Transverse and Longitudinal Mode.
13	LCR circuit –forced and damped harmonic oscillations.
14	Determination of wavelength and velocity of ultrasonic waves using ultrasonic diffractometer.
15	Determination of particle size of lycopodium powder.

SEMESTER S1/S2

CHEMISTRY FOR PHYSICAL SCIENCE

(Group C)

Course Code	GCCYT122	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory+ Lab

Course Objectives:

- 1. To equip students with a thorough understanding of chemistry concepts relevant to engineering applications.
- 2. To familiarize students with applied topics such as spectroscopy, electrochemistry, and instrumental methods.
- **3.** To raise awareness among students about environmental issues, including climate change, pollution, and waste management, and their impact on quality of life.

SYLLABUS

Module	Syllabus Description	Contact
No.	Synabus Description	
	Engineering Materials	
	Fuels: Calorific value – HCV and LCV – Experimental determination	
	of calorific value of solid fuels. Analysis of coal – Proximate analysis-	
1	Octane &Cetane Number. Biofuels- Biodiesel-Green Hydrogen.	
•	Lubricants: Classification - Solid, Semisolid and Liquid lubricants.	
	Properties of lubricants - Viscosity Index, Flash point, Fire point, Cloud	9
	Point, Pour Point & Aniline Point.	
	Cement: Manufacture of Portland cement – Theory of setting and	
	hardeningof cement.	
	Nanomaterials: Classification based on Dimension & Materials-	
	Synthesis - Sol gel & Chemical Reduction - Applications of	
	nanomaterials - Supercapacitor Materials - Carbon Nanotubes,	
	Fullerenes & Graphene – structure, properties & application.	
	Polymers: ABS & Kevlar - Synthesis, properties and	
	application - Application.	
	Electrochemistry and Corrosion Science	
	Electrochemical Cell- Electrode potential- Nernst equation for single	
	electrode and cell (Numerical problems)- Reference electrodes – SHE	
2	& Calomel electrode -Construction and Working - Electrochemical	
-	series - Applications - Glass Electrode & pH Measurement-	
	Conductivity- Measurement using Digital conductivity meter. Li-ion	9
	battery & H ₂ -O ₂ fuel cell (acid electrolyte only) construction and	
	working.	
	Corrosion –Electrochemical corrosion mechanism (acidic & alkaline	
	medium) Galvanic series - Corrosion control methods - Cathodic	
	Protection - Sacrificial anodic protection and impressed current	
	cathodic protection -Electroplating of copper - Electroless plating of	
	Copper	

	B.Tech 2024 –S	1,52
	Instrumental Methods of Analysis	
	Molecular Spectroscopy: Types of spectra- Molecular energy levels -	
	BeerLambert's law - Numerical problems - Electronic Spectroscopy -	
	Principle, Types of electronic transitions -Role of Conjugation in	
	absorption maxima - Instrumentation-Applications - Vibrational	
3	spectroscopy - Principle-Number of vibrational modes - Vibrational	
	modes of CO ₂ and H ₂ O –Applications	
	Thermal analysis: -TGA- Principle, instrumentation (block diagram)	
	and applications - TGA of CaC ₂ O ₄ .H ₂ O and polymers. DTA-	9
	Principle, instrumentation (block diagram) and applications - DTA of	
	CaC ₂ O ₄ .H ₂ O. Chromatography- Gas Chromatography-Principle-	
	Instrumentation- Application - Analysis of chemical composition of	
	exhaust gases. Electron Microscopic Techniques: SEM - Principle,	
	instrumentation and Applications.	
	Environmental Chemistry	
	Water characteristics - Hardness - Types of hardness- Temporary	
	and Permanent - Disadvantages of hard water -Degree of hardness	
	(Numericals) Water softening methods-Ion exchange process-	
4	Principle, procedure and advantages. Reverse osmosis - principle,	
	process and advantages Water disinfection methods - chlorination-	9
	Break point chlorination, ozone and UV irradiation. Dissolved oxygen	
	(DO), BOD and COD- Definition & Significance	
	Waste Management: Air Pollution- Sources & Effects- Greenhouse	
	Gases- Ozone depletion. Control methods. Sewage water treatment-	
	Primary, Secondary and Tertiary - Flow diagram -Trickling filter and	
	UASB process. Solid waste-disposal methods- Composting, Landfill	
	& Incineration.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attondonos	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from	Each question carries 9 marks.	
eachmodule.	Two questions will be given from each	
• Total of 8 Questions,	module, outof which 1 question should be	
eachcarrying 3 marks	answered.	60
	Each question can have a maximum of 3	
(8x3 =24marks)	subdivisions.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
604	Describe the use of various engineering materials in different	
CO1	industries.	K2
G 6 6	Explain the Basic Concepts of Electrochemistry and Corrosion to	
CO2	Explore the Possible Applications in Various Engineering Fields.	K2
664	Use appropriate analytical techniques for different engineering	
CO3	materials	К3
CO4	Outline various water treatment and waste management methods	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3				2	3					2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Engineering Chemistry	B. L. Tembe, Kamaluddin, M. S. Krishnan	NPTEL Web-book	2018				
2	Physical Chemistry	P. W. Atkins	Oxford University Press	International Edition- 2018				
3	Instrumental Methods of Analysis	H. H. Willard, L. L. Merritt	CBS Publishers	7th Edition- 2005				
4	Engineering Chemistry	Jain & Jain	Dhanpath Rai Publishing Company	17 th Edition - 2015				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Fundamentals of Molecular Spectroscopy	C. N. Banwell	McGraw-Hill	4 th edn., 1995			
2	Principles of PhysicalChemistry	B. R. Puri, L. R. Sharma, M. S. Pathania	Vishal Publishing Co	47th Edition, 2017			
3	Introduction to Spectroscopy	Donald L. Pavia	Cengage Learning India Pvt. Ltd	2015			
4	Polymer Chemistry: An Introduction	Raymond B. Seymour, Charles E. Carraher	Marcel Dekker Inc	4th Revised Edition,1996			
5	The Chemistry of Nanomaterials: Synthesis, Properties and Applications	Prof. Dr. C. N. R. Rao, Prof. Dr. h.c. mult. Achim Müller, Prof. Dr. A. K. Cheetham	Wiley-VCH Verlag GmbH & Co. KGaA	2014			
6	Organic Electronics Materials and Devices	Shuichiro Ogawa	Springer Tokyo	2024			
7	Principles and Applications of Thermal Analysis	Gabbot, P	Oxford: Blackwell Publishing	2008			

	Video Links (NPTEL, SWAYAM)					
Sl No.	Link ID					
	https://archive.nptel.ac.in/courses/104/106/104106137/					
1	https://archive.nptel.ac.in/courses/113/105/113105102/					
	https://archive.nptel.ac.in/courses/113/104/113104082/					
	https://www.youtube.com/watch?v=BeSxFLvk1h0					
2	https://archive.nptel.ac.in/courses/113/104/113104102/					
Z	https://archive.nptel.ac.in/courses/104/105/104105124/					
	https://archive.nptel.ac.in/courses/105/104/105104157/					

Continuous Assessment (10 Marks)

Continuous assessment evaluations are conducted based on laboratory associated with the theory.

Mark distribution

1. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of thetheoretical background related to the experiments.

2. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record andmaintaining a well-organized fair record.

2. Viva Voce (3 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, andrecord are the average of all the specified experiments in the syllabus.

Evaluation Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure andunderstanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programmingtask.

2. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

List of Experiments

*Minimum 10 Experiments

Expt. Nos.	Experiment
1	Estimation of iron in iron ore
2	Estimation of copper in brass
3	Determination of cell constant and conductance of solutions
4	Calibration of pH meter and determination of pH of a solution
	Synthesis of polymers
_	(a) Urea-formaldehyde resin
5	(b) Phenol-formaldehyde resin
	Determination of wavelength of absorption maximum and colorimetric estimation of
6	Fe ³⁺ in solution
	Determination of molar absorptivity of a compound (KMnO4 or any water-soluble
7	food colorant)
8	Analysis of IR spectra
9	Identification of drugs using TLC
10	Estimation of total hardness of water-EDTA method
11	Estimation of dissolved oxygen by Winkler's method
12	Determination of calorific value using Bomb calorimeter
13	Determination of saponification value of a given vegetable oil
14	Determination of acid value of a given vegetable oil
15	Verification of Nernst equation for electrochemical cell.

SEMESTER S1 ENGINEERING MECHANICS

Course Code	GCEST103	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. The course aims to enable students to analyse and solve fundamental mechanics problems

SYLLABUS

Module No.	Syllabus Description			
1	Introduction to statics: introduction to branches of mechanics, concept of rigid body scalars and vectors, vector operations, forces in space. Support reactions of beams (point load and UDL only) Force systems: rectangular components in 2D and 3D, moment and couple, resultants Equilibrium: system isolation and the free-body diagram, equilibrium conditions 2D and 3D	10		
2	Friction: -laws of friction – analysis of blocks and ladder Centroid of composite areas – moment of inertia- parallel axis and perpendicular axis theorems. Polar moment of inertia, radius of gyration, mass moment of inertia-ring and disc	10		
3	Dynamics – rectilinear translation - equations of motion in kinematics and kinetics – D'Alembert's principle. –motion on horizontal and inclined surfaces, motion of connected bodies	8		
4	Curvilinear translation - equations of kinematics projectile motion (solution starting from differential equations) Rotation - kinematics of rotation- equation of motion for a rigid body rotating about a fixed axis -rotation under a constant moment	8		

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination- 1(Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 = 24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Understand the vector representation of forces and moments	K2
CO2	Identify and describe the components of system of forces acting on the rigid body	К3
CO3	Apply the conditions of equilibrium to different force system.	К3
CO4	Identify appropriate principles to solve problems of mechanics.	К3
CO5	Develop the understanding of fundamental principles of rigid body dynamics	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										
CO2	3	3										
CO3	3	3										
CO4	3	3										
CO5	3	2										

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Engineering Mechanics	Timoshenko and Young	McGraw Hill Publishers	5 th Edition 2017			
2	Engineering Mechanics: Combined Statics and Dynamics	Russell C. Hibbeler	Pearson Education,	14 th Edition 2015			
3	Engineering Mechanics - Statics and Dynamics,	Shames, I. H.	Prentice Hall ofIndia.	4 th Edition 2008			
4	Textbook of Engineering Mechanics	R. K. Bansal	Laxmi publications pvt ltd.	4 th Edition 2016			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Engineering Mechanics Statics	J. L. Meriam, L. G.	Wiley	9 th Edition 2020				
2	Engineering Mechanics	Kraige	PHI Learning	2011				

	Video Links (NPTEL, SWAYAM)				
	Link ID				
1	https://nptel.ac.in/courses/112106286				

SEMESTER S1

INTRODUCTION TO MECHANICAL ENGINEERING & CIVIL ENGINEERING

Course Code	GCEST104	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	4-0-0-0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understand thermodynamic cycles and working of IC engines.
- 2. Understand the refrigeration cycles and psychrometric concepts.
- 3. Understand the relevance of civil engineering and its various disciplines.
- 4. Describe the relevance of various building codes and types of buildings as per NBC.
- 5. Understand different building components and building materials.

SYLLABUS

Module No.	Syllabus Description				
1	General introduction to Mechanical Engineering: Thermodynamic cycles -Carnot Cycle -Derivation of efficiency (problems on efficiency) Otto, Diesel cycles (no derivation of efficiency and problems). IC Engines: CI & SI Engines, working of 2-Stroke & 4-Stroke engines. Listing the parts of IC Engines. Concept of CRDI, MPFI and hybrid engines. Refrigeration: Unit of refrigeration, reversed Carnot cycle, COP, vapour compression cycle (only description and no problems); Definitions of dry, wet & dew point temperatures, specific humidity and relative humidity, Psychrometric chart, Cooling and	9			
	dehumidification, Layout of central air conditioning systems.				

B.Tech 2024 -S1/S2

		24 –S1/S2
	Classification of pumps, Description about working with sketches	
	of: Reciprocating pump, Centrifugal pump. Classification of	
	Hydraulic Turbines.	
	Different type of gears and its applications (spur, helical, bevel,	
	worm and worm wheel), List types of clutches and their use,	
2	Bearings and their classification (Journal bearing and ball bearing)	9
	Manufacturing Process: Sand Casting, Forging, Rolling, Extrusion.	
	Metal Joining Processes: List types of welding, Description with	
	sketches of Arc Welding, SMAW, Soldering and Brazing and their	
	applications.	
	Machining processes: Description and operations performed on	
	Lathe, Drilling machine, Milling machine, CNC machine, 3D	
	printing.	
	General Introduction to Civil Engineering: Relevance of Civil	
	Engineering in the overall infrastructural development of the	
	country.	
	Brief introduction to major disciplines of Civil Engineering like	
	Structural Engineering, Geo-technical Engineering, Transportation	
	Engineering, Water Resources Engineering and Environmental	
3	Engineering.	9
	Introduction to buildings: Types of buildings according to	
	character of occupancy as per NBC, Load bearing and non-load	
	bearing building structures, components of a residential building	
	and their functions (conceptonly).	
	Selection of site for a residential building.	
	Building Area Definitions: Built up area, Plinth area, Floor area,	
	Carpet area and Floor area ratio of a building as per KBR.	
	Building rules and regulations: Relevance of NBC, KBR &	
	CRZ norms (brief discussion of relevance only).	
	Conventional construction materials: Brick, stone, sand,	
	cement and timber- Classifications, Qualities, Tests and Uses of	
4	construction materials. Cement concrete: Constituent materials,	
	properties and types.	9

Tests on fresh and hardened concrete - slump test, cube
compressivestrength as per IS Codes.
Steel: Structural steel sections and steel reinforcements – types and
uses.
Soil-Origin of soil-weathering of rocks, types of weathering

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the relevance of mechanical engineering and its various disciplines.	K2
CO2	Learn the applications of thermodynamics through IC engines and refrigeration systems.	К2
CO3	Understand the various manufacturing processes adapted by mechanical engineers.	K2
CO4	Understand the relevance of civil engineering and its various disciplines.	К2
CO5	Describe the relevance of various building codes and types of buildings as per NBC	K2
CO6	Understand different building components and building materials.	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3											
CO3	3											2
CO4	3											
CO5	3							2				2
CO6	3											2

Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Basic Mechanical Engineering	Pravin Kumar	Pearson Education	1st Edition,2013	
2	A Textbook of Basic MechanicalEngineering	R.K. Rajput	Laxmi Publications	3 rd Edition,2017	
3	Elements of Mechanical Engineering	K.P. Roy, S.K. Hajra Choudhury, A.K. Hajra Choudhury	Media Promoters & Publishers Pvt. Ltd.	Revised Edition, 2012	
4	Fundamentals of Mechanical Engineering	G.S. Sawhney	PHI Learning Pvt. Ltd.	1st Edition,2013	
5	Essentials of Civil Engineering	Dalal K R	Charotar Publishing house	1 st Edition 2012	
6	Engineering Materials(Material Science)	Rangwala S C	Charotar PublishingHouse Pvt Limited	43 rd Edition2019	
7	Building Materials	Duggal S K	New Age International	5 th Edition2019	

		Reference Books			
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year 2nd Edition, 2017	
1	Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives	Chris Mi and M. Abul Masrur	John Wiley & Sons		
2	Automotive Engineering Fundamentals	Richard Stone and Jeffrey K. Ball	SAE International	1 st Edition 2004	
3	Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing	Ian Gibson, David W. Rosen, and Brent Stucker	Springer	2 nd Edition 2015	
4	Heating, Ventilating, and AirConditioning Analysis and Design	Faye C. McQuiston, Jerald D. Parker, and Jeffrey D. Spitler	John Wiley & Sons	6 th Edition 2005	
5	Materials for Civil and Construction Engineering	Mamlouk, M.S.,and Zaniewski, J.P	Pearson Publishers	4 th Edition 2017	
6	Building Construction	Rangwala, S.C and Dalal, KB	Charotar Publishing house	34 th Edition 2022	
7	Construction Technology Vol.I to IV	Chudley, R	Longman group,England Course Plan	2 nd Edition 2014	
8	Building Construction Volumes1to4	Mckay, W.B.and Mckay,J.K	Pearson India Education Services	5 th Edition	
9	Engineering Geology	Duggal S. K., Pandey H.K. and Rawat N,	Mcgraw Hill Education, New Delhi	1 st Edition 2017	
10	Latest Building codes and	related rules and regulation	S.		

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
	https://nptel.ac.in/courses/112/105/112105123/					
1	https://nptel.ac.in/courses/112/106/112106133/					
	https://nptel.ac.in/courses/112/105/112105129/					
	https://nptel.ac.in/courses/112/105/112105171/					
2	https://nptel.ac.in/courses/112/105/112105268/					
	https://archive.nptel.ac.in/courses/112/107/112107145					
3	https://archive.nptel.ac.in/courses/105/106/105106201/					
4	https://archive.nptel.ac.in/courses/105/106/105106206/					

SEMESTER S1

ALGORITHMIC THINKING WITH PYTHON

(Common to All Branches)

Course Code	UCEST105	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide students with a thorough understanding of algorithmic thinking and its practical applications in solving real-world problems.
- 2. To explore various algorithmic paradigms, including brute force, divide-and-conquer, dynamic programming, and heuristics, in addressing and solving complex problems.

SYLLABUS

Module No.	Syllabus Description					
	PROBLEM-SOLVING STRATEGIES:- Problem-solving strategies defined, Importance of understanding multiple problem-solving strategies, Trial and Error, Heuristics, Means-Ends Analysis, and Backtracking (Working backward). THE PROBLEM-SOLVING PROCESS:- Computer as a model of computation, Understanding the problem, Formulating a model, Developing an algorithm, Writing the program, Testing the program, and Evaluating the solution.					
1	ESSENTIALS OF PYTHON PROGRAMMING:- Creating and using variables in Python, Numeric and String data types in Python, Using the math module, Using the Python Standard Library for handling basic I/O - print, input, Python operators and their precedence.	7				

	ALGORITHM AND PSEUDOCODE REPRESENTATION:- Meaning and	
	Definition of Pseudocode, Reasons for using pseudocode, The main constructs of pseudocode - Sequencing, selection (if-else structure, case structure) and repetition (for, while, repeat-until loops), Sample problems*	
	FLOWCHARTS** :- Symbols used in creating a Flowchart - start and end, arithmetic calculations, input/output operation, decision (selection), module name (call), for loop (Hexagon), flow-lines, on-page connector, off-page connector.	
2	* - Evaluate an expression, d=a+b*c, find simple interest, determine the larger of two numbers, determine the smallest of three numbers, determine the grade earned by a student based on KTU grade scale (using if-else and case structures), print the numbers from 1 to 50 in descending order, find the sum of n numbers input by the user (using all the three loop variants), factorial of a number, largest of n numbers (Not to be limited to these exercises. More can be worked out if time permits).	9
	** Only for visualizing the control flow of Algorithms. The use of tools like RAPTOR (https://raptor.martincarlisle.com/) is suggested. Flowcharts for the sample problems listed earlier may be discussed	
3	SELECTION AND ITERATION USING PYTHON:- if-else, elif, for loop, range, while loop. Sequence data types in Python - list, tuple, set, strings, dictionary, Creating and using Arrays in Python (using <i>Numpy</i> library). DECOMPOSITION AND MODULARIZATION*:- Problem decomposition as a strategy for solving complex problems, Modularization, Motivation for modularization, Defining and using functions in Python, Functions with multiple return values RECURSION:- Recursion Defined, Reasons for using Recursion, The Call Stack, Recursion and the Stack, Avoiding Circularity in Recursion, <i>Sample problems - Finding the nth Fibonacci number, greatest common divisor of two positive integers, the factorial of a positive integer, adding two positive integers, the sum of digits of a positive number **.</i>	10

* The idea should be introduced and demonstrated using Merge sort, the problem of returning the top three integers from a list of $n \ge 3$ integers as examples. (Not to be limited to these two exercises. More can be worked out if time permits). ** Not to be limited to these exercises. More can be worked out if time permits. COMPUTATIONAL APPROACHES TO PROBLEM-SOLVING (Introductory diagrammatic/algorithmic explanations only. Analysis not required):-Brute-force Approach -Example: Padlock, Password guessing Divide-and-conquer Approach -Example: The Merge Sort Algorithm Advantages of Divide and Conquer Approach Disadvantages of Divide and Conquer Approach Dynamic Programming Approach Example: Fibonacci series Recursion vs Dynamic Programming Greedy Algorithm Approach 4 Example: Given an array of positive integers each indicating the 10 completion time for a task, find the maximum number of tasks that can be completed in the limited amount of time that you have. Motivations for the Greedy Approach Characteristics of the Greedy Algorithm Greedy Algorithms vs Dynamic Programming Randomized Approach Example 1: A company selling jeans gives a coupon for each pair of jeans. There are n different coupons. Collecting **n** different coupons would give you free jeans. How many jeans do you expect to buy before getting a free one? - Example 2: **n** people go to a party and drop off their hats to a hat-check person. When the party is over, a different hat-check person is on duty and returns the n hats randomly back to each person. What is the expected number of people who get back their hats Motivations for the Randomized Approach

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Att	tendance	Continuous Assessment (Accurate Execution of Programming Tasks)	Internal Examination-1 (Written Examination)	Internal Examination-2 (Written Examination)	Internal Examination- 3 (Lab Examination)	Total
	5	5	10	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	
(8x3 = 24marks)	divisions.	
(OAC 2 IMATES)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Utilize computing as a model for solving real-world problems.	К2			
CO2	Articulate a problem before attempting to solve it and prepare a clear and accurate model to represent the problem.	К3			
CO3	Use effective algorithms to solve the formulated models and translate algorithms into executable programs.	К3			
CO4	Interpret the problem-solving strategies, a systematic approach to solving computational problems, and essential Python programming skills	К2			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

Reference Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Problem solving & programming concepts	Maureen Sprankle, Jim Hubbard	Pearson	2012
2	How to Solve It: A New Aspectof Mathematical Method	George Pólya	Princeton University Press	2015
3	Creative Problem Solving: AnIntroduction	Donald Treffinger., Scott Isaksen, Brian Stead- Doval	Prufrock Press	2005
4	Psychology (Sec Problem Solving.)	Spielman, R. M., Dumper, K., Jenkins, W., Lacombe, A., Lovett, M., & Perlmutter, M	HOP Edition	2021
5	Computer Arithmetic Algorithms	Koren, Israel	AK Peters/CRC Press	2018
6	Introduction to Computation and Programming using Python	Guttag John V	PHI	2/e., 2016
7	Python for Everyone	Cay S. Horstmann, Rance D. Necaise	Wiley	3/e, 2024
8	Computational Thinking: A Primer for Programmers and Data Scientists		Mylspot Education Services Pvt Ltd	2020

	Video Links (NPTEL, SWAYAM)				
Module No.					
1	https://opentextbc.ca/h5ppsychology/chapter/problem-solving/				
2	https://onlinecourses.nptel.ac.in/noc21_cs32/preview				

1. Continuous Assessment (5 Marks)

Accurate Execution of Programming Tasks

- Correctness and completeness of the program
- Efficient use of programming constructs
- Handling of errors
- Proper testing and debugging

2. Evaluation Pattern for Lab Examination (10 Marks)

1. Algorithm (2 Marks)

Algorithm Development: Correctness and efficiency of the algorithm related to the question.

2. Programming (3 Marks)

Execution: Accurate execution of the programming task.

3. Result (3 Marks)

Accuracy of Results: Precision and correctness of the obtained results.

4. Viva Voce (2 Marks)

Proficiency in answering questions related to theoretical and practical aspects of the subject.

Sample Classroom Exercises:

- 1. Identify ill-defined problem and well-defined problems
- 2. How do you differentiate the methods for solving algorithmic problems: introspection, simulation, computer modelling, and experimentation?
- Use cases for Trial and error, Algorithm, Heuristic and Means-ends analysis can be applied proffering solution to problems
- 4. Use a diagram to describe the application of Tower of Hanoi in choosing and analysing anaction at a series of smaller steps to move closer to the goal
- 5. What effect will be generated if the stage that involves program writing is not observed in the problem solving process?
- 6. What effect will be generated if the stage that involves program writing is not observed in the problem solving process?
- 7. Evaluate different algorithms based on their efficiency by counting the number of steps.
- 8. Recursive function that takes a number and returns the sum of all the numbers from zero tothat number.
- 9. Recursive function that takes a number as an input and returns the factorial of that number.
- 10. Recursive function that takes a number 'n' and returns the nth number of the Fibonaccinumber.
- 11. Recursive function that takes an array of numbers as an input and returns the product of allthe numbers in the list.

LAB Experiments:

- 1. Demonstrate about Basics of Python Programming
- 2. Demonstrate about fundamental Data types in Python Programming. (i.e., int, float, complex,bool and string types)
- 3. Demonstrate different Arithmetic Operations on numbers in Python.
- 4. Create, concatenate, and print a string and access a sub-string from a given string.
- 5. Familiarize time and date in various formats (Eg. "Sun May 29 02:26:23 IST 2017")
- 6. Write a program to create, append, and remove lists in Python using numPy.
- 7. Programs to find the largest of three numbers.
- 8. Convert temperatures to and from Celsius, and Fahrenheit. [Formula: c/5 = f-32/9]
- 9. Program to construct the stars(*) pattern, using a nested for loop
- 10. Program that prints prime numbers less than 20.

- 11. Program to find the factorial of a number using Recursion.
- 12. Recursive function to add two positive numbers.
- 13. Recursive function to multiply two positive numbers
- 14. Recursive function to the greatest common divisor of two positive numbers.
- 15. Program that accepts the lengths of three sides of a triangle as inputs. The program output should indicate whether or not the triangle is a right triangle (Recall from the Pythagorean Theorem that in a right triangle, the square of one side equals the sum of the squares of the other two sides). Implement using functions.
- 16. Program to define a module to find Fibonacci Numbers and import the module to anotherprogram.
- 17. Program to define a module and import a specific function in that module to another program.
- 18. Program to check whether the given number is a valid mobile number or not using functions?

Rules:

- 1. Every number should contain exactly 10 digits.
- 2. The first digit should be 7 or 8 or 9

SEMESTER S1

ENGINEERING WORKSHOP

Course Code	GCESL106	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0-0-2-0	ESE Marks (Internal only)	50
Credits	1	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. To enable the student to familiarize various tools, measuring devices, practices and differentmethods employed in the industry.
- 2. To enable the students to apply this experience while developing product/project for thebenefit of society.

Expt.	Experiments					
No.	(Minimum 12 Exercises)					
	General: Introduction to workshop practice, Safety precautions, Shop floor					
	ethics, and Basic First Aid knowledge. Study of mechanical and measurement					
	tools, components and their applications: (a) Tools: screw drivers, spanners,					
1	Allen keys, cutting pliers etc. and accessories (b) bearings, seals, O-rings,					
1	circlips, keys etc.(c)Vernier Calipers, Height					
	Gauge, Depth Gauge, Micrometers, Bevel Protractor etc.					
	Carpentry: Understanding carpentry tools and knowledge of at least one model					
2	1. T – Lap joint 2. Cross lap joint 3. Dovetail joint 4. Mortise joints					
	Foundry: Understanding of foundry tools and knowledge of at least one model					
3	1. Bench Moulding 2. Floor Moulding 3. Core making 4. Pattern making					
	Sheet Metal: Understanding sheet metal working tools and knowledge of at					
4	least one model					
1. Cylindrical shape 2. Conical shape 3. Prismatic shaped job from she						
	Fitting: Understanding the tools used for fitting and knowledge of at least one					
5	model					
	1. Square Joint 2. V- Joint 3. Male and female fitting					

	Plumbing: - Understanding plumbing tools and pipe joints, along with
6	practicing one exercise on joining pipes using a minimum of three types of pipe
	joints
7	Smithy: - Understanding the tools used in smithy. Demonstrating the forge-
,	ability of different materials (MS, Al, alloy steel and cast steels) in both cold
	and hot states. Observing the qualitative difference in the hardness of these
	materials. One exercise on smithy (Square prism).
	Welding: Understanding welding equipment and practicing at least one welding
8	technique, such as making joints using electric arc welding. Bead formation in
	horizontal, verticaland overhead positions
9	Rolling: - Objective of rolling, rolling process, practical on two high rolling mill
10	Electroplating: -Electroplating a given job
	Metrology: Common measuring instruments used in workshop, experiments to
11	find theangle of a dovetail, angle of a taper and the radius of a circular surface.
11	Introduction to instruments Vernier Bevel Protractor, Vernier Depth Gauge,
	Vernier Height Gauge.
	Assembly: Demonstration only Dissembling and assembling of
12	1. Cylinder and piston assembly 2. Tail stock assembly 3. Bicycle 4. Pump or
	any other machine
	Machines: Demonstration of the following machines:
13	Shaping and slotting machine; Milling machine; Grinding Machine; Lathe;
	DrillingMachine.
	Modern manufacturing methods (Fab lab/IDEA Lab - Demonstration only):
14	Power tools, CNC machine tools, 3D printing, Soft Materials cutting using special
	machines
	Use of proper Personal Protective Equipments. Measurements using Tape, Ruler,
15	Vernier calipers, screw gauge
16	Measuring the area of a plot with an irregular boundary using a chain and cross
	staff
17	Measuring the area of a building using Distomat
18	Finding the level difference between two points using dumpy level
19	Onsite quality assessment of brick, and cement
L	-1

	Construct a 1 and 1 ½ thick brick wall with a height of 50 cm and a minimum
20	length of 60 cm using English bond. Check the verticality of the wall
	Construct a 1 and 1 ½ thick brick wall with a height of 50 cm and a minimum
21	length of 60 cm using Flemish bond. Check the verticality of the wall
	Estimate the number of different types of building blocks needed to construct the
22	walls of a room measuring 2m x 3m, accounting for standard-sized doors and
22	windows.
23	Setting out of a two roomed building using thread, tape and water tube levelling.
	Conduct a market study to understand the types, prices, and general
24	specifications of at least three materials available in the market (such as
24	bricks, cement, aggregates, steel, plumbing items, fixtures, welding rods,
	fasteners etc.).
	Studying the tools and testing instruments for electrical works. Wiring a light
25	or a fan circuit using one way and two-way switch.
	Familiarization/Application of testing instruments and commonly used tools in
26	electronic works. [Multimeter, Soldering iron, De-soldering pump, Pliers,
	Cutters, Wire strippers, Screw drivers, Tweezers, Crimping tool, Hot air
	soldering and desoldering station etc.]
	bottoring and desordering station etc.]

Note: Minimum of 12 experiments from among the 26 experiments listed, is to be completed.

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timelycompletion of Lab Reports / Record (Continuous Assessment)	Total
5	45	50

End Semester Examination Marks (ESE): (Internal evaluation only)

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with validinference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified Lab record.

Pass Criteria:

- A student must score a minimum of 50% overall, combining marks from both Continuous Internal Evaluation (CIE) and End Semester Examination (ESE).
- In addition, the student must secure at least 40% in the End Semester Examination (ESE).

The ESE shall be conducted internally, with evaluation carried out by a panel of faculty members. This panel must include at least one faculty member who was not involved in the Continuous Internal Evaluation (CIE) of the lab course.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify workshop operations and instruments in accordance with the material and objects.	К3
CO2	Understand appropriate tools and instruments with respect to the workshop specializations.	К2
CO3	Apply various tools, measuring devices, practices and different methods employed in the industry.	К3
CO4	Examine the quality of common materials used in the industry.	К3
CO5	Conduct market study of various engineering materials and consumables available in the market.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3									2		2
CO2	3									2		2
CO3	3				2					2		3
CO4	3									2		3
CO5	3								2	3		3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Mechanical Workshop Practice	K C John	PHI Learning	Edition 2 2010				
2	Engineering Materials	S C Rangwala	Charotar Publishing House Pvt Limited	Edition 43 2019				
3	Building Materials	S K Duggal	New Age International	Edition 6 2025				
4	Indian Practical Civil EngineeringHandbook	Khanna P.N,	UBS Publishers Distributers (P) Ltd.	Year 2012				
5	Building Construction	Arora S.P and Bindra S.P	Dhanpat Rai Publications	Edition 5 Year 2022				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Elements of Workshop Technology Vol-1- ManufacturingProcesses	S K Hajra Choudhury A K Hajra Choudhury Nirjhar Roy	MPP Media Promoters and Publishers	2008				

Video Links (NPTEL, SWAYAM)					
Link ID					
https://archive.nptel.ac.in/courses/105/106/105106206/					
https://archive.nptel.ac.in/courses/105/106/105106201/					
https://archive.nptel.ac.in/courses/105/104/105104101/					
https://archive.nptel.ac.in/courses/117/106/117106108/					

Continuous Assessment (45 Marks)

1. Preparation and Pre-Lab Work (10 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (15 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and trouble shooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (10 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record andmaintaining a well-organized fair record.

4. Viva Voce (10 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure andunderstanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizingmaterials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment orprogramming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S1/S2

HEALTH AND WELLNESS

(Common to all Groups)

Course Code	UCHWT127	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	1:0:1:0	ESE Marks	0
Credits	1	Exam Hours	Nil
Prerequisites (if any)	None	Course Type	

Course Objectives:

- 1. To provide essential knowledge on physical activity, health, and wellness.
- **2.** To ensure students understand body systems, exercise principles, nutrition, mental health, and disease management.
- **3.** To educate students on the benefits of yoga, the risks of substance abuse and basic first aid skills.
- **4.** To equip students with the ability to lead healthier lifestyles.
- **5.** To enable students to design effective and personalized exercise programs.

SYLLABUS

Module No.	Syllabus Description	Contact Hours			
	Human Body Systems related to Physical activity and its				
	functions:Respiratory System - Cardiovascular System.				
	Musculoskeletal System and the Major Muscle groups of the				
	Human Body. Quantifying Physical Activity Energy Expenditure				
	and Metabolic equivalentof task (MET)				
1	Exercise Continuum: Light-intensity physical activity, Moderate -	4			
	intensityphysical activity, Vigorous -intensity physical activity.				
	Defining Physical Activity, Aerobic Physical Activity, Anaerobic				
	Physical Activity, Exercise and Health-Related Physical Fitness.				
	FITT principle to design an Exercise programme				

	B.1ech 202	4 –31/32
	Components of Health-related Physical Fitness: - Cardiorespiratory	
	Fitness-Muscular strength- Muscular endurance- Flexibility- Body	
	composition.	
	Concept of Health and Wellness: Health and wellness	
	differentiation, Factors affecting health and wellness. Mental health	
	and Factors affectingmental health.	
	Sports and Socialization: Sports and character building -	
	Leadership through Physical Activity and Sports	
2		2
	Diet and nutrition: Exploring Micro and Macronutrients: Concept	
	ofBalanced diet	
	Carbohydrate & the Glycemic Index	
	Animal & Plant - based Proteins and their Effects on Human Health	
	Dietary Fats & their Effects on Human Health	
	Essential Vitamins and Minerals	
	Lifestyle management strategies to prevent / manage common	
	hypokinetic diseases and disorders - Obesity - Cardiovascular	
	diseases (e.g., coronary artery disease, hypertension) - Diabetes -	
	Osteoporosis - Musculoskeletal disorders (e.g., osteoarthritis, Low	
3	back pain, Kyphosis, lordosis, flat foot, Knock knee)	4
3	Meaning, Aims and objectives of yoga - Classification and	-
	importance of of Yogic Asanas (Sitting, Standing, lying)	
	Pranayama and Its Types - Active Lifestyle and Stress	
	Management Through Yoga	
	Understanding on substance abuse and addiction - Psychoactive	
	substances & its ill effects- Alcohol- Opioids- Cannabis -	
	Sedative -Cocaine -Other	
	stimulants, including caffeine -Hallucinogens -Tobacco -Volatile	
	solvents.	

4	First aid and principles of First Aid: Primary survey: ABC (Airway, Breathing, Circulation). Qualities of a Good First Aider First aid measures for: - Cuts and scrapes - Bruises - Sprains - Strains - Fractures - Burns - Nosebleeds. First Aid Procedures: Cardiopulmonary Resuscitation (CPR) - HeimlichManeuver - Applying a sling Sports injuries: Classification (Soft Tissue Injuries Abrasion	2
	Sports injuries: Classification (Soft Tissue Injuries - Abrasion, Contusion, Laceration, Incision, Sprain & Strain)	

Additional Topics

- Need and Importance of Physical Education and its relevance in interdisciplinary context. Understanding of the Endocrine System
- Developing a fitness profile
- Healthy foods habits for prevention and progression of Lifestyle Diseases. Processed foods and unhealthy eating habits.
- Depression Anxiety Stress
- Different ways of carrying an injured person. Usage of Automated external defibrillator

Course Assessment Method (CIE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Case Study/Micro project/Presentation	Activity evaluation	Total
10	20	20	50

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
	Explain the different human body systems and describe various			
CO1	types of physical activities along with methods to measure and quantify these activities.	K2		
CO2	Explain how to maintain or improve health and wellness through psychological practices, dietary habits, and sports activities.	K2		
CO3	Discuss about common hypokinetic disorders and musculoskeletal disorders, and describe the importance of leading a healthy lifestyle through the practice of yoga and abstaining from addictive substances.	K2		
CO4	Explain the basics of first aid and describe common sports injuries	К2		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				2		3		3	3	2		2
CO2				2		3		2	2			2
CO3						3		3				2
CO4				2		3						2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Foundations of Nutrition	Bhavana Sabarwal	Commonwealth Publishers	1999		
2	Anatomy and physiology in health and illness.	Ross and Wilson	Waugh, A., & Grant, A.	2022		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Fit to be Well Essential Concept	Thygerson, A. L., Thygerson, S. M., & Thygerson, J. S.	Jones & Bartlett Learning.	2018		
2	Introduction to physical education, fitness, and sport.	Siedentop, D., & Van der Mars, H.	Human kinetics.	2022		
3	Substance Use Disorders. Manual for Physicians.	Lal, R., & Ambekar, A. (2005).	National Drug Dependence Treatment Centre, New Delhi	2005		
4	The exercise health connection-how to reduce your risk of disease and other illnesses by making exercise your medicine.	Nieman, D. C., & White, J. A	Public Health	1998		
5	ACSM's resource manual for guidelines for exercise testing and prescription.	Lippincott Williams & Wilkins.	American College of Sports Medicine.	2012		
6	Exercise Physiology: energy, nutrition and human performance.	Katch, F. I., Katch, V. L., & McArdle, W. D.	Lippincott Williams &Wilkins	2010		

Continuous Internal Evaluation Marks (CIE): for the Health and wellness course

Students will be evaluated as follows.

Title	Method of Evaluation
Attendance	Students must attend at least 75% of both theory and practical classes. They will receive 10 marks based on their class attendance. Students who do not meet the minimum attendance requirement for a course, as specified in the B. Tech regulations, will not be eligible to proceed to the next criteria.
Assignment / Presentation	Assignments will be given to students to assess their understanding of the subjects taught. Students will be required to make presentations on the subjects taught in class, and their understanding of the subjects will be assessed. Based on the Assignments and Presentations the students will be awarded marks out of 20
Activity Evaluation	The Assignment / Presentation faculty handling the class will use the tests from the Fitness Protocols and Guidelines for ages 18+ to 65 years, as set forth by FIT India. Measurements will be taken for all the tests of the FIT India Fitness Protocol and the evaluation will be based on the benchmark score received for the following tests: 1. V Sit Reach Test 2. Partial Curl Up - 30 seconds 3. Push Ups (Male) and Modified Push Up (Female) 4. Two (2) Km Run/Walk Students who achieve a total benchmark score of 8 across the aforementioned 4 tests will be awarded pass marks for activity evaluation. Students who score better will be awarded a maximum mark of 20.
Activity Evaluation - Special Circumstances	Physically challenged and medically unfit students can opt for an objective test to demonstrate their knowledge of the subjects taught. Based on their performance in the objective test, they will be awarded marks out of 20.

Activity Evaluation
- Special
Considerations -
NCC

Students who enrolled themselves in the NCC during the course period (between the start and end dates of the program) and attended 5 college level parades will be awarded pass marks for activity evaluation. Students who attend more parades will be eligible for a maximum mark of 20 based on their parade attendance.

Tests to evaluated as per Criterion - 2 and Benchmark Scores

V Sit Reach Test

How to Perform:

- 1. The subject removes their shoes and sits on the floor with the measuring line between theirlegs and the soles of their feet placed immediately behind the baseline, heels 8-12" apart.
- 2. The thumbs are clasped so that hands are together, palms facing down and placed on themeasuring line.
- 3. With the legs held flat by a partner, the subject slowly reaches forward as far as possible, keeping the fingers on baseline and feet flexed.
- 4. After three tries, the student holds the fourth reach for three seconds while that distance is recorded.
- 5. Make sure there are no jerky movements, and that the fingertips remain level and the legsflat.

Infrastructure/Equipment Required:

- 1. A tape for marking the ground, marker pen, and ruler.
- 2. With the tape mark a straight line two feet long on the floor as the baseline, and a measurement line perpendicular to the midpoint of the baseline extending two feet on each side.
- 3. Use the marker pen to indicate every centimeter and millimeter along the measurement line. The point where the baseline and the measuring line intersect is the zero point.
- 4. Scoring: The score is recorded in centimeters and millimeters as the distance reached by the hand, which is the difference between the zero point (where the baseline and measuring line intersect) and the final position

Scoring for V Sit Reach Test for Males

Level	Benchmark Score	Measurement (cm)
1	2	<11
2	4	12-13
3	6	14-17
4	7	18-19
5	8	20-21
6	9	22
7	10	>22

Scoring for V Sit Reach Test for Females

Level	Benchmark Score	Measurement (cm)
1	2	<14
2	4	15-16
3	6	17-19
4	7	20-21
5	8	22
6	9	23
7	10	>23

Partial Curl Up - 30 seconds

How to Perform:

- 1. The subject lies on a cushioned, flat, clean surface with knees flexed, usually at 90 degrees, with hands straight on the sides (palms facing downwards) closer to the ground, parallel to the body.
- 2. The subject raises the trunk in a smooth motion, keeping the arms in position, curling up the desired amount (at least 6 inches above/along the ground towards the parallel strip).
- 3. The trunk is lowered back to the floor so that the shoulder blades or upper back touch the floor.

Infrastructure/Equipment Required:

Flat clean cushioned surface with two parallel strips (6 inches apart), Stopwatch

Scoring: Record the maximum number of Curl ups in a certain time period 30 seconds.

Scoring for Partial Curl Up - 30 seconds Test for Males

Level	Benchmark Score	Numbers
1	2	<25
2	4	25-30
3	6	31-34
4	7	35-38
5	8	39-43
6	9	44-49
7	10	>49

Scoring for Partial Curl Up - 30 seconds Test for Females

Level	Benchmark Score	Numbers
1	2	<18
2	4	18-24
3	6	25-28
4	7	29-32
5	8	33-36
6	9	37-43
7	10	>43

Push Ups for Male/Modified Push Ups for Female

How to Perform:

- 1. A standard push up begins with the hands and toes touching the floor, the body and legs in a straight line, feet slightly apart, the arms at shoulder width apart, extended and at a right angle to the body.
- 2. Keeping the back and knees straight, the subject lowers the body to a predetermined point, to touch some other object, or until there is a 90-degree angle at the elbows, then returns back to the starting position with the arms extended.
- 3. This action is repeated, and the test continues until exhaustion, or until they can do no

more in rhythm or have reached the target number of push-ups.

4. For Female: push-up technique is with the knees resting on the ground.

Infrastructure/Equipment Required:

Flat clean cushioned surface/Gym mat

Scoring: Record number of correctly completed pushups.

Scoring for Push Ups for Male

Level	Benchmark Score	Numbers
1	2	<4
2	4	04- 10
3	6	11 -18
4	7	19-34
5	8	35-46
6	9	47-56
7	10	>56

Scoring for Modified Push Ups for Female

Level	Benchmark Score	Numbers
1	2	0-1
2	4	2 - 5
3	6	6 -10
4	7	11 - 20
5	8	21-27
6	9	27-35
7	10	>35

2 Km Run/Walk

How to Perform:

- 1. Participants are instructed to run or walk 2 kms in the fastest possible pace.
- 2. The participants begin on signal (Starting point)- "ready, start". As they cross the finish line, elapsed time should be announced to the participants.
- 3. Walking is permitted but the objective is to cover the distance in the shortest possible time.

Infrastructure/Equipment Required:

Stopwatch, whistle, marker cone, lime powder, measuring tape, 200 or 400 m with 1.22 m (minimum 1 m) width preferably on a flat and even playground with a marking of starting and finish line. You can also use any application on your mobile phone that tells you the distance.

Scoring: Time taken for completion (Run or Walk) in min, sec.

Scoring for 2Km Run/walk for Male

Level	Benchmark Score	Minutes : Seconds
1	2	> 11:50
2	4	10:42
3	6	09:44
4	7	08:59
5	8	08:33
6	9	07:37
7	10	>07:37

Scoring for 2Km Run/walk for Female

Level	Benchmark Score	Minutes : Seconds
1	2	>13:47
2	4	12:51
3	6	12:00
4	7	11:34
5	8	10:42
6	9	09:45
7	10	>09:45

SEMESTER - S1/S2

LIFE SKILLS AND PROFESSIONAL COMMUNICATION (Common to all Branches)

Course Code	UCHUT128	CIE Marks	100
Teaching Hours/Week (L: T:P: R)	2:0:1:0	ESE Marks	0
Credits	1	Exam Hours	-
Prerequisites (if any)	None	Course Type	Activity-based learning

Course objectives:

- To foster self-awareness and personal growth, enhance communication and interpersonal
 connection skills, promote effective participation in groups and teams, develop critical thinking,
 problem-solving, and decision-making skills, and cultivate the ability to exercise emotional
 intelligence.
- 2. To equip students with the necessary skills to listen, read, write & speak, to comprehend and successfully convey any idea, technical or otherwise.
- 3. To equip students to build their profile in line with the professional requirements and standards.

Continuous Internal Evaluation Marks (CIE):

- Continuous internal evaluation is based on the individual and group activities as detailed in theactivity table given below.
- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. They should use online collaboration tools for group activities, report/presentation making and work management.
- Activities are to be distributed between 3 class hours (2L+1P) and 3.5 Self-study hours.
- Marks given against each activity should be awarded fully if the students successfully complete activity.
- Students should maintain a portfolio file with all the reports and other textual materials
 generated from the activities. Students should also keep a journal related to the activities
 undertaken.
- Portfolio and journal are mandatory requirements for passing the course, in addition to the

- minimum marks required.
- The portfolio and journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through the HMC courses and Mini project course.
- Self-reflection questionnaire shall be given at the beginning of the semester, in between and at the end of the semester based on the guidelines in the manual of the course.

Table 1. Activity Table

Sl. No.	Activity	Class room (L) / Self Study (SS)	Week of completion	Group / Individual (G/I)	Marks	Skills	СО
1.1	Group formation and self-introduction among the group members	L	1	G	-	• Connecting with	
1.2	Familiarizing the activities and preparation of the time plan for the activities	L	1	G	-	• Time management -	
1.3	Preparation of Gantt chart based on the time plan	SS	1	G	2	Gantt Chart	
2.1	Take an online personality development test, self-reflect and report	SS	1	I	2	• Self-awareness Writing	CO1
2.2	Role-storming exercise 1: Students assume 2 different roles given below and write about their Strengths, Areas for improvement, Concerns, Areas in which he/she hesitates to take advice, Goals/Expectations, from the point of view of the following assumed roles i) their parent/guardian/mentor ii) their friend/sibling/cousin	L	1	I	2	•Goal setting - Identification of skills and setting goal •Self-awareness •Discussion in groups •Group work- Compiling of ideas • Mind mapping	CO1
2.3	Role-storming exercise 2: Students assume the role of their teacher						CO1

and write about theSkills required as a B. Tech grAttitudes, habits, approaches	aduate	SS	1	I	2		
• Attitudes, habits, approaches	aduate						
	required						
and activities to be practised du	ring their						
B.Tech years, in order to achieve	ve the set						
goals							
2.4 Discuss the skills identified	through						
role storming exercise by ea	ich one	L	1	G	2		
within their own group and in	nprovise						CO1
the list of skills							
2.5 Prepare a mind map based on t	he role-						
storming exercise and exhibit/p	resent it	SS	2	G	2		CO1
in class							
3 Prepare a presentation on insta	inces of	т	24.4	T	2	- I	
empathy they have observed	in their	L	2 to 4	I	2	• Empathy	CO2
own life or in other's life							
4.1 Each student connects and n	etworks					Workplace	
with a minimum of 3 profe	ssionals	SS	3	I	2	awareness	
from industry/public	sector	~~			_	• Listening	
organizations/other agencie	s/NGOs					• Communication -	
/academia (at least 1 through Lin	nkedIn)					interacting with	
4.2 Interact with them to underst	and their					people	
workplace details including						Networking	
workplace skills required						through various	
• their work experience		SS	3	I	4	media including	
•activities they have done to	enhance					LinkedIn	
their employability during their	B. Tech					• Discussion in	CO2
years						groups	
• suggestions on the different	activities					• Report	
to be done during B. Tech years						preparation	
Prepare a documentation of this						• Creativity	
4.3 Discuss the different workplace	details &						
work readiness activities assim	ilated by	SS	2		2	Goal setting -	
each through the interactions wi	ithin their	33	3	G		Preparation of	
group and compile the inputs	collected					action plan	CO2
by the individuals						1	
Prepare the Minutes of the discu	ssions						
	on the	SS	4	G	3	1	CO4

	discussions					3.1ecn 2024 –31/32 	
4.5	Perform a role-play based on the workplace dynamics assimilated through interactions and group discussions	L	5	G	4		CO3
4.6	Identify their own goal and prepare an action plan for their undergraduate journey to achieve the goal	SS	5	I	2		CO1
5.1	Select a real-life problem that requires a technical solution and list the study materials needed	L	6	G	2		CO3
5.2	Listen to TED talks & video lectures from renowned Universities related to the problem and prepare a one-page summary (Each group member should select a different resource)	SS	6	I	2		CO4
5.3	Use any online tech forum to gather ideas for solving the problem chosen	SS	6	G	2		CO5
5.4	Arrive at a possible solution using six thinking hat exercise	L	7	G	3		СОЗ
5.5	Prepare a report based on the problem-solving experience	SS	7	G	2		CO4
6.1	Linkedin profile creation	SS	1	I	2		CO6
6.2	Resume preparation	SS	8	I	2	Profile-building	CO6
6.3	Self-introduction video	SS	8	I	3	1 Tomic-building	CO6
7	Prepare a presentation on instances of demonstration of emotional intelligence	SS	9	I	2	Emotional intelligence	CO2
8	Prepare a short video presentation on diversity aspects observed in our society (3 to 5 minutes)	SS	10	G	3	Diversity	CO2, CO5
9	Take online Interview skills development sessions like robotic interviews; self-reflect and report	SS	10	I	2	• Interview skills	CO6
10	Take an online listening test, self-reflect and report	SS	11	I	2	Listening skills	CO6
11.1	Activities to improve English vocabulary of students	L	8	I/G	4	• English vocabulary	CO4

				ı		1ech 2024 –31/32	
11.2	Activities to help students identify	L	9	I/G	2	 English language 	CO4
	errors in English language usage					skills	
11.3	Activity to help students identify commonly misspelled words, commonly mispronounced words and confusing words	L	10	I/G	2	WritingPresentationGroup workSelf-reflection	CO4
11.4	Write a self-reflection report on the improvement in English language communication through this course	SS	12	I	2		CO4
11.5	Presentation by groups on the experience of using online collaboration tools in various group activities and time management experience as per the Gantt chart prepared	L	11 to 12	G	2		CO4, CO5
12.1	Each group prepares video content for podcasts on innovative technological interventions/research work tried out in Kerala context by academicians/professionals/Govt. agencies/research institutions/private agencies/NGOs/other agencies	SS	12	G	4	 Audio-visual presentations creations with the use of technology tools Effective use of social media 	CO2, CO4, CO5
12.2	Upload the video content to podcasting platforms or YouTube	SS	12	G	1	platforms • Profile building	CO5
12.3	Add the link of the podcast in their LinkedIn profile	SS	12	G	1		CO5

Table 2. Lab hour Activities (P): 24 Marks

Sl No	Activity	Marks	Skill	СО
1	Hands-on sessions on day-to-day engineering skills and a self-			
	reflection report on the experience gained:			
	1. Drilling practice using electric hand drilling			
	machines.			
	2. Cutting of MS rod and flat using electric hand cutters.			
	3. Filing, finishing and smoothening using			
	electrically operated hand grinders.		Basic practical	3
	4. MS rod cutting using Hack saw by holding the work in	24	engineering skills	3
	bench wise.			
	5. Study and handling different types of measuring			
	instruments.			
	6. Welding of MS, SS work pieces.			
	7. Pipe bending practice (PVC and GI).			
	8. Water tap fitting.			
	9. Water tap rubber seal changing practice.			
	10. Union and valves connection practice in pipes.			
	11. Foot valve fitting practice.			
	12. Water pump seal and bearing changing practice.			
2	Language Lab sessions	-	Language Skills	4

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop the ability to know & understand oneself, show confidence in one's potential & capabilities, set goals and develop plans to accomplish tasks	К5
CO2	Develop the ability to communicate and connect with others, participate in groups/teams, empathise, respect diversity, be responsible and understand the need to exercise emotional intelligence	K5
CO3	Develop thinking skills, problem-solving and decision-making skills	К5
CO4	Develop listening, reading, writing & speaking skills, ability to comprehend & successfully convey any idea, and ability to analyze, interpret & effectively summarize textual, audio & visual content	K6
CO5	Develop the ability to create effective presentations through audio-visual mediums with the use of technology tools and initiate effective use of social media platforms & tech forums for content delivery and discussions	К6
CO6	Initiate profile-building exercises in line with the professional requirements, and start networking with professionals/academicians	К6

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1										1		3
CO2					1			3		3		3
CO3		1	1		1					1		1
CO4					1					1		2
CO5					1	1				1		2
CO6					1					1		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Life Skills & Personality Development	Maithry Shinde et.al.	Cambridge University Press	First Edition, 2022
2	Emotional Intelligence: Why it can matter more than IQ	Daniel Goleman	Bloomsbury, Publishing PLC	25th Anniversary Edition December 2020
3	Think Faster, Talk Smarter: How to speak successfully when you are put on the spot	Matt Abrahams	Macmillan Business	September 2023
4	Deep Work: Rules for focused success in a distracted world	Cal Newport	PIATKUS	January 2016
5	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017
6	Interchange	Jack C. Richards, With Jonathan Hull, Susan Proctor	Cambridge publishers	5th Edition

Reference Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Life Skills for Engineers	Remesh S., Vishnu R.G.	Ridhima Publications	First Edition, 2016
2	Soft Skills & Employability Skills	Sabina Pillai and Agna Fernandez	Cambridge University Press	First Edition, 2018
3	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017
4	English Grammar in Use	Raymond Murphy,	Cambridge University Press India PVT LTD	5th Edition 2023
5	Guide to writing as an Engineer	David F. Beer and David McMurrey	John Willey. New York	2004

SEMESTER 2 GROUP C

SEMESTER S2

MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE – 2

(Common to Groups B & C)

Course Code	GYMAT201	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic knowledge in single variable	Course Type	Theory
	calculus.		

Course Objectives:

1. To provide a comprehensive understanding of partial derivatives, multiple integrals, and the differentiation and integration of vector-valued functions, emphasizing their applications in engineering contexts.

Module No.	Syllabus Description			
1	Limits and continuity, Partial derivatives, Partial derivatives of functions with two variables, Partial derivatives viewed as rate of change and slope3s, Partial derivatives of functions with more than two variables, Higher order partial derivatives, Local Linear approximations, Chain rule, Implicit differentiation, Maxima and minima of functions of two variables - relative maxima and minima (Text 1: Relevant topics from sections 13.2, 13.3, 13.4, 13.5, 13.8)	9		

B.Tech 2024 -S1/S2

	B.1ech 202	7 -51/52
	Double integrals, Reversing the order of integration in double	
2	integrals, change of coordinates in double integrals (Cartesian to	9
L	polar), Evaluating areas using Double integrals, Finding volumes	9
	using double integration,	
	Triple integrals, Volume calculated as triple integral, Triple	
	integral in Cartesian and cylindrical coordinates.	
	(Text 1: Relevant topics from section 14.1, 14.2, 14.3, 14.5, 14.6)	
	Vector valued function of single variable - derivative of vector	
	valued function, Concept of scalar and vector fields, Gradient and	
3	its properties, Directional derivative, Divergent and curl, Line	
	integrals of vector fields, Work done as line integral, Conservative	9
	vector field, independence of path, Potential function (results	
	without proof).	
	(Text 1: Relevant topics from section 12.1, 12.2, 13.6, 15.1, 15.2,	
	15.3)	
	Green's theorem (for simply connected domains, without proof)	
	and applications to evaluating line integrals, finding areas using	
	Greens theorem, Surface integrals over surfaces of the form	
4	z=g(x, y), Flux integrals over surfaces of the form $z=g(x, y)$,	9
	Divergence theorem (without proof), Using Divergence theorem	
	to find flux, Stokes theorem (without proof)	
	(Text 1: Relevant topics from section 15.4, 15.5, 15.6, 15.7,15.8)	
	7	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from	Each question carries 9 marks.	
eachmodule.	Two questions will be given from each	
• Total of 8 Questions,	module, outof which 1 question should be	
eachcarrying 3 marks	answered.	60
	• Each question can have a maximum of 3	
(8x3 =24marks)	subdivisions.	
(one 2 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Compute the partial and total derivatives and maxima and minima of multivariable functions and to apply in engineering problems.	К3
CO2	Understand theoretical idea of multiple integrals and to apply them to find areas and volumes of geometrical shapes.	К3
CO3	Compute the derivatives and line integrals of vector functions and tolearn their applications.	К3
CO4	Apply the concepts of surface and volume integrals and to learn their inter-relations and applications.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Calculus	H. Anton, I. Biven, S.Davis	Wiley	12 th edition, 2024

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Thomas' Calculus	Maurice D. Weir, Joel Hass, Christopher Heil, Przemyslaw Bogacki	Pearson	15 th edition, 2023
2	Essential Calculus	J. Stewart	Cengage	2 nd edition, 2017
3	Advance Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition, 2016
4	Bird's Higher Engineering Mathematics	John Bird	Taylor & Francis	9 th edition, 2021
5	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://nptel.ac.in/courses/111107108				
2	https://nptel.ac.in/courses/111107108				
3	https://nptel.ac.in/courses/111107108				
4	https://nptel.ac.in/courses/111107108				

SEMESTER S1/S2

PHYSICS FOR PHYSICAL SCIENCE AND LIFE SCIENCE

(Common to Group C & D)

Course Code	GZPHT121	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory + Lab

Course Objectives:

- 1. To provide students with a solid background in the fundamentals of Physics and impart this knowledge in Physical Science and Life Science disciplines.
- 2. To develop scientific attitudes and enable students to correlate Physics concepts with their core programs.
- 3. To equip students with practical knowledge that complements their theoretical studies and develop their ability to create practical applications and solutions in engineering based on their understanding of Physics.

Module No.	Syllabus Description	Contact Hours
1	Deprical processes — Absorption-Spontaneous emission and stimulated emission, Principle of laser - conditions for sustained lasing — Population inversion — Pumping — Metastable states, Basic components of laser - Active medium - Optical resonant cavity, Construction and working of Ruby laser and CO2 laser, Construction and working Semiconductor laser (qualitative), Properties of laser, Applications of laser. Optic fiber-Principle of propagation of light, Types of fibers-Step index and Graded index fibers - Multimode and single mode fibers, Acceptance angle, Numerical aperture — Derivation, Applications of optical fibers - Fiber optic communication system (block diagram)	9
2	Introduction, Principle of super position, Constructive and destructive interference, Optical path, Phase difference and path difference, Cosine law- reflected system- Condition for constructive and destructive interference, Colours in thin films, Newton's Rings-Determination of refractive index of transparent liquids and wavelength, Air wedge- Measurement of thickness of thin sheets. Diffraction-types of diffraction, Diffraction due to a single slit, Diffraction grating – Construction - grating equation, Dispersive and Resolving Power(qualitative).	9

3	Quantum Mechanics Introduction, Concept of uncertainty and conjugate observables (qualitative), Uncertainty principle (statement only), Application of uncertainty principle- Absence of electron inside nucleus - Natural line broadening, Wave function — properties — physical interpretation, Formulation of time dependent and time independent Schrodinger equations, Particle in a one- dimensional box — Derivation of energy eigen values and normalized wave function, Quantum Mechanical Tunnelling (qualitative)	9
4	Waves & Acoustics Waves- transverse and longitudinal waves, Concept of frequency, wavelength and time period (no derivation), Transverse vibrations in a stretched string- derivation of velocity and frequency - laws of transverse vibration. Acoustics- Reverberation and echo, Reverberation time and its significance - Sabine's Formula, Factors affecting acoustics of a building. Ultrasonics- Piezoelectric oscillator, Ultrasonic diffractometer, SONAR, NDT-Pulse echo method, medical application-Ultrasound scanning (qualitative)	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

1	Attendance	Continuous Assessment	Internal Examination-1 (Written)		Internal Examination- 3 (Lab Examination)	Total
	5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from	• Each question carries 9 marks.	
eachmodule.	Two questions will be given from each	
• Total of 8 Questions,	module, outof which 1 question should be	(0)
eachcarrying 3 marks	answered.	60
	• Each question can have a maximum of 3	
(8x3 = 24marks)	subdivisions.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Explain the basic principles and properties of laser and optic fibers.	K2				
CO2	Describe the phenomena of interference and diffraction of light.	K2				
CO3	Explain the behaviour of matter in the atomic and subatomic level through the principles of quantum mechanics.	K2				
CO4	Apply the knowledge of waves and acoustics in non-destructive testing and in acoustic design of buildings.	К3				
CO5	Apply basic knowledge of principles and theories in physics to conduct experiments.	К3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3											3
CO3	3											3
CO4	3	3										3
CO5	3	3			3				2			3

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	A Textbook of EngineeringPhysics	M N Avadhanulu, P G Kshirsagar & TVS Arun Murthy	S Chand & Co.	2 nd Edition, 2019					
2	Engineering Physics	nysics H K Malik , A.K. Singh,		2 nd Edition, 2017					
3	Optics	Ajoy Ghatak	Mc Graw Hill Education	6 th Edition, 2017					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Engineering Physics	G Vijayakumari	Vikas Publications	8 th Edition, 2014					
2	Concepts of Modern Physics	Arthur Beiser	Tata McGraw Hill Publications	6th Edition 2003					
3	Engineering Physics	Aruldhas G.	PHI Pvt. Ltd	2 nd Edition, 2015					
4	Fiber Optic Communications	Gerd Keiser	Springer	2021					
5	A Text Book of Engineering physics	I. Dominic, A. Nahari	OWL Publications	2 nd Edition, 2016					
6	Advanced Engineering Physics	Premlet B	Phasor Books						
7	Engineering Physics	Rakesh Dogra	Katson Books	1 st Edition, 2019					

	Video Links (NPTEL, SWAYAM)					
Module No	Link ID					
	https://nptel.ac.in/courses/115102124					
1	https://nptel.ac.in/courses/104104085					
2	https://nptel.ac.in/courses/115105537					
	https://nptel.ac.in/courses/115102023					
3	3 https://nptel.ac.in/courses/115101107					
	https://nptel.ac.in/courses/112104212					
4	https://nptel.ac.in/courses/124105004					

1. Continuous Assessment (10 Marks)

i. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that testunderstanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

ii. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, andtroubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

iii. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Properdocumentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record andmaintaining a well-organized fair record.

iv. Viva Voce (3 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, andrecord are the average of all the specified experiments in the syllabus.

2. Evaluation Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure andunderstanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment orprogramming task

2. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

 Proficiency in answering questions related to theoretical and practical aspects of thesubject.

Experiment List

Experiment	Experiment		
No. (Minimum 10 Experiments)			
1	Optical fiber characteristics- Measurement of Numerical aperture.		
2	Determination of wavelength of Laser using diffraction grating.		
3 Measure the wavelength of Laser using a millimetre scale as a grating			
4	Determination of wavelength of a monochromatic light using Newton's Rings method.		
5	Determination of diameter of wire or thickness of thin sheet using Air wedge method.		
6	Determination of slit width (diffraction due to a single slit).		
7	Measure wavelength of light source using diffraction grating.		

8	Determination of resolving power and dispersive power of grating.
9	Characteristics of LED.
10	CRO basics-Measurement of frequency and amplitude of wave forms.
11	Solar Cell- I V and Intensity Characteristics.
12	Melde's experiment- Frequency calculation in Transverse and Longitudinal Mode.
13	LCR circuit –forced and damped harmonic oscillations.
14	Determination of wavelength and velocity of ultrasonic waves using ultrasonic diffractometer.
15	Determination of particle size of lycopodium powder.

SEMESTER S1/S2 CHEMISTRY FOR PHYSICAL SCIENCE

(Group C)

Course Code	GCCYT122	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory + Lab

Course Objectives:

- 1. To equip students with a thorough understanding of chemistry concepts relevant to engineering applications.
- 2. To familiarize students with applied topics such as spectroscopy, electrochemistry, and instrumental methods.
- 3. To raise awareness among students about environmental issues, including climate change, pollution, and waste management, and their impact on quality of life.

Module No.	Syllabus Description						
	Engineering Materials						
	Fuels: Calorific value – HCV and LCV – Experimental						
	determination of calorific value of solid fuels. Analysis of coal -						
	Proximate analysis- Octane & Cetane Number. Biofuels- Biodiesel-						
1	Green Hydrogen.						
	Lubricants: Classification - Solid, Semisolid and Liquid lubricants.						
	Properties of lubricants - Viscosity Index, Flash point, Fire point,	9					
	Cloud Point, Pour Point & Aniline Point. Cement: Manufacture of Portland cement – Theory of setting and						
	hardeningof cement.						

	B.1ecn 202	4 -31/32
	Nanomaterials: Classification based on Dimension & Materials-	
	Synthesis – Sol gel & Chemical Reduction - Applications of	
	nanomaterials - Supercapacitor Materials - Carbon Nanotubes,	
	Fullerenes & Graphene – structure, properties & application.	
	Polymers: ABS & Kevlar -Synthesis, properties and applications.	
	Conducting Polymers- Classification – Application	
	Electrochemistry and Corrosion Science	
	Electrochemical Cell- Electrode potential- Nernst equation for	
	single electrode and cell (Numerical problems)- Reference	
2	electrodes – SHE & Calomel electrode –Construction and Working	
2	- Electrochemical series - Applications – Glass Electrode & pH	
	Measurement-Conductivity- Measurement using Digital	9
	conductivity meter. Li-ion battery & H ₂ -O ₂ fuelcell (acid electrolyte	
	only) construction and working.	
	Corrosion –Electrochemical corrosion mechanism (acidic & alkaline	
	medium) Galvanic series - Corrosion control methods - Cathodic	
	Protection - Sacrificial anodic protection and impressed current	
	cathodic	
	protection –Electroplating of copper - Electroless plating of copper	
	Instrumental Methods of Analysis	
	·	
	Molecular Spectroscopy: Types of spectra- Molecular energy levels	
	- Beer Lambert's law - Numerical problems - Electronic	
	Spectroscopy – Principle, Types of electronic transitions –Role of	
2	Conjugation in absorption maxima - Instrumentation-Applications -	
3	Vibrational spectroscopy – Principle-Number of vibrational modes -	9
	Vibrational modes of CO ₂ and H ₂ O –Applications	,
	Thermal analysis: -TGA- Principle, instrumentation (block	
	diagram) and applications – TGA of CaC ₂ O ₄ .H ₂ O and polymers.	
	DTA-Principle, instrumentation (block diagram) and applications -	
	DTA of CaC ₂ O ₄ .H ₂ O. Chromatography- Gas Chromatography-	
	Principle-Instrumentation- Application - Analysis of chemical	
	composition of exhaust gases.	
	Electron Microscopic Techniques: SEM - Principle,	
	instrumentation and Applications.	
1	1	

	Environmental Chemistry	
4	Water characteristics - Hardness - Types of hardness- Temporary	
	and Permanent - Disadvantages of hard water -Degree of hardness	9
	(Numericals) Water softening methods-Ion exchange process-	
	Principle, procedure and advantages. Reverse osmosis – principle,	
	process and advantages Water	
	disinfection methods - chlorination-Break point chlorination, ozone	
	and UV irradiation. Dissolved oxygen (DO), BOD and COD-	
	Definition & Significance	
	Waste Management: Air Pollution- Sources & Effects- Greenhouse	
	Gases-Ozone depletion. Control methods. Sewage water treatment-	
	Primary, Secondary and Tertiary - Flow diagram -Trickling filter and	
	UASB process.	
	Solid waste-disposal methods- Composting, Landfill & Incineration.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from	Each question carries 9 marks.	
eachmodule.	Two questions will be given from each module,	
• Total of 8 Questions,	outof which 1 question should be answered.	60
eachcarrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
	Describe the use of various engineering materials in different	
CO1	industries.	K2
G 6 6	Explain the Basic Concepts of Electrochemistry and Corrosion to	
CO2	Explore the Possible Applications in Various Engineering Fields.	K2
GOA	Apply appropriate analytical techniques for different engineering	
CO3	materials	К3
CO4	Outline various water treatment and waste management methods	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3				2	3					2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Engineering Chemistry	B. L. Tembe, Kamaluddin, M. S. Krishnan	NPTEL Web-book	2018				
2	Physical Chemistry	P. W. Atkins	Oxford University Press	Internation alEdition-2018				
3	Instrumental Methods of Analysis	H. H. Willard, L. L. Merritt	CBS Publishers	7th Edition- 2005				
4	Engineering Chemistry	Jain & Jain	Dhanpath Rai Publishing Company	17 th Edition - 2015				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fundamentals of Molecular Spectroscopy	C. N. Banwell	McGraw-Hill	4 th edn., 1995				
2	Principles of PhysicalChemistry	B. R. Puri, L. R. Sharma, M. S. Pathania	Vishal Publishing Co	47th Edition, 2017				
3	Introduction to Spectroscopy	Donald L. Pavia	Cengage Learning India Pvt. Ltd	2015				
4	Polymer Chemistry: An Introduction	Raymond B. Seymour,Charles E. Carraher	Marcel Dekker Inc	4th Revised Edition, 1996				
5	The Chemistry of Nanomaterials: Synthesis, Properties and Applications	Prof. Dr. C. N. R. Rao, Prof. Dr. h.c. mult. Achim Müller, Prof. Dr. A. K. Cheetham	Wiley-VCH Verlag GmbH & Co. KGaA	2014				
6	Organic Electronics Materials and Devices	Shuichiro Ogawa	Springer Tokyo	2024				
7	Principles and Applications of Thermal Analysis	Gabbot, P	Oxford: Blackwell Publishing	2008				

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
	https://archive.nptel.ac.in/courses/104/106/104106137/			
	https://archive.nptel.ac.in/courses/113/105/113105102/			
1	https://archive.nptel.ac.in/courses/113/104/113104082/			
1	https://www.youtube.com/watch?v=BeSxFLvk1h0			
	https://archive.nptel.ac.in/courses/113/104/113104102/			
	https://archive.nptel.ac.in/courses/104/105/104105124/			
2	https://archive.nptel.ac.in/courses/105/104/105104157/			

Continuous Assessment (10 Marks)

Continuous assessment evaluations are conducted based on laboratory associated with the theory.

Mark distribution

1. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of thetheoretical background related to the experiments.

2. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (3 Marks)

 Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions. • Timely Submission: Adhering to deadlines for submitting lab reports/rough record andmaintaining a well-organized fair record.

4. Viva Voce (3 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure andunderstanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizingmaterials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programmingtask.

2. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

List of Experiments

*Minimum 10 Experiments

Expt. Nos.	Experiment
1	Estimation of iron in iron ore
2	Estimation of copper in brass
3	Determination of cell constant and conductance of solutions
4	Calibration of pH meter and determination of pH of a solution
	Synthesis of polymers
_	(a) Urea-formaldehyde resin
5	(b) Phenol-formaldehyde resin
	Determination of wavelength of absorption maximum and colorimetric estimation of
6	Fe ³⁺ in solution
	Determination of molar absorptivity of a compound (KMnO4 or any water-soluble
7	food colorant)
8	Analysis of IR spectra
9	Identification of drugs using TLC
10	Estimation of total hardness of water-EDTA method
11	Estimation of dissolved oxygen by Winkler's method
12	Determination of calorific value using Bomb calorimeter
13	Determination of saponification value of a given vegetable oil
14	Determination of acid value of a given vegetable oil
15	Verification of Nernst equation for electrochemical cell.

SEMESTER S2

ENGINEERING GRAPHICS AND COMPUTER AIDED DRAWING

Course Code	GCEST203	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	2-0-2-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	CourseType	Theory & Lab

Course Objectives:

- 1. To learn the principles and techniques of dimensioning and preparation of drawings
- 2. To develop the ability to accurately interpret engineering drawings
- 3. To learn the features of CAD software

Module No.	Syllabus Description			
1	Introduction: Relevance of technical drawing in engineering field. Types of lines, Dimensioning, BIS code of practice for technical drawing. (Noquestions for the end semester examination) Projection of points in different quadrants, Projection of straight lines inclined to one plane and inclined to both planes. Traces of a line. Inclination of lines with reference planes True length and true inclinations of line inclined to both the reference planes.	9		
2	Projection of Simple solids such as Triangular, Rectangle, Square, Pentagonal and Hexagonal Prisms, Pyramids, Cone Cylinder and tetrahedron. Projection of solids in simple position including profile view. Projection of solids with axis inclined to one of the reference planes and with axis inclined to both reference planes.	9		

B.Tech 2024 -S1/S2

		2.100.120	
		Sections of Solids: Sections of tetrahedron, Prisms, Pyramids, Cone,	
		Cylinder with axis in vertical position and cut by different section	
	3	planes. True shape of the sections. (Exclude true shape given	9
		problems)	
		Development of Surfaces: Development of surfaces of the solids and	
		solids cut by different section planes. (Exclude problems with	
		through holes)	
		Isometric Projection: Isometric scale- Isometric View and	
		Projections of Prisms, Pyramids, Cone, Cylinder, Frustum of	
		Pyramid, Frustum of Cone, Sphere, Hemisphere and their	
	4	combinations.	
	4	Computer Aided Drawing (CAD): Introduction, Role of CAD in	9
		design and development of new products, Advantages of CAD.	
		Creating two-dimensional drawing with dimensions using suitable	
		software. (CAD, onlyinternal evaluation)	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject		Internal Examination - 2(Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Student can choose any one full question out of two questions from each module

2 Questions from one module.	Total
Total 8 Questions, each question carries 15 marks	
(15x4 =60marks)	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand and plot the projection of points and lines located in different quadrants	К3
CO2	Prepare Multiview orthographic projections of objects by visualizing them in different positions	К3
CO3	Plot sectional views and develop surfaces of a given object	К3
CO4	Prepare pictorial drawings using the principles of isometric projection	К3
CO5	Sketch simple drawing using cad tools.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	2										
CO3	3	2										
CO4	3	2										
CO5	3	2	2		3							

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Engineering Graphics	Varghese, P. I.	V I P Publishers	Ist Edition 2012					
2	Engineering Graphics,	Benjamin, J.	Pentex Publishers	5 th Edition 2017					
3	Engineering Graphics fordegree	John, K. C.	Prentice Hall India Publishers	Publishe din 2011					
5	Engineering Graphics,	Anilkumar, K. N.	Adhyuth Narayan Publishers	10 th Edition 2016					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Engineering Graphics with AutoCAD,	Kulkarni, D. M., Rastogi, A. P. and Sarkar, A. K.	Prentice Hall India Publishers	2009					
2	Engineering Drawing & Graphics	Venugopal, K.	New Age International Publishers	4 th edition 2007					
3	Engineering Drawing	Parthasarathy, N. S., andMurali, V.	Oxford University Press	2015					

Video Links (NPTEL, SWAYAM)						
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/112/102/112102304/					
2	https://archive.nptel.ac.in/courses/112/102/112102304/					
3	https://archive.nptel.ac.in/courses/112/102/112102304/					
4	https://archive.nptel.ac.in/courses/112/102/112102304/					

SEMESTER S2

BASIC ELECTRICAL & ELECTRONICS ENGINEERING

(Common to Group C & D)

Course Code	GZEST204	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	4:0:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Apply fundamental concepts and circuit laws to solve simple DC/AC electric circuits
- 2. Develop an awareness on the fundamentals of electric power generation, transmission and distribution
- **3.** Compare different types of DC and AC motors
- 4. Describe the fundamental concepts of electronic components and devices
- 5. Outline the basic principles of an electronic instrumentation system
- 6. Identify important applications of modern electronics in the contemporary world

Module No.	Syllabus Description				
1	Generation of alternating voltages: - Faradays laws of Electromagnetic induction, Generation of Alternating Voltage, Elementary Generator, Representation of ac voltage and currents, sinusoidal waveforms: frequency, period average, RMS values and form factor of waveform; (Simple numerical problems) DC Circuits: Resistance in Series and Parallel, Ohms Law and Kirchhoff'slaws, Voltage and current divider rule (Simple numerical problems)	11			

		1
	AC circuits: Purely resistive, inductive and capacitive circuits; Inductive and capacitive reactance, concept of impedance. (Simple numerical problems) Three phase AC systems: Representation of three phase voltages; star and delta connections (balanced only), relation between line and phase voltages, line and phase currents Power in AC circuits – Power factor; active, reactive and apparent power in single phase and three phase system. (Simple numerical problems)	
2	thermal, nuclear plants (Block diagram description) Introduction to non-conventional energy sources: solar, wind, small hydroplants, PV system for domestic application. Transformers. Principle of operation, step-up and step-down transformers AC power supply scheme: Single phase and three phase system, Three phase 3 wire and 4 wire systems, Transmission System, Distribution system: Feeder, distributor, service mains Types of Motors — Principle of Operation: Block diagram showing power stages, losses and efficiency (electrical and mechanical and overall efficiency); Simple numerical efficiency Introduction to different types of DC and AC motors. Classification and different type of dc and ac motors, common applications: Principle oftraction and applications Earthing: need for earthing, Types of earthing; pipe earthing, plate earthing; Principle of operation of MCB, ELCB/RCCB	11
3	Introduction to Semiconductor devices: Electronic components- Passive and active components - Resistors, Capacitors and Inductors (constructional features not required): types, specifications. Standard values, colour coding. PN Junction diode: - Principle of operation, V-I characteristics. Bipolar Junction Transistors: PNP and NPN structures, Principle of operation	11

	B.1een 202	1 51/52
	Digital Electronics: -Binary number system, Boolean algebra and	
	Logic Gates, Universal gates.	
	Basic electronic circuits: - Rectifiers and power supplies: Block	
	diagram description of a dc power supply, working of a full wave	
	bridge rectifier, capacitor filter (no analysis), working of simple zener	
	voltage regulator.	
	Amplifiers: - Transistor as an amplifier, Block diagram of Public	
	Address system	
	Electronic Instrumentation:	
4	Quality of measurements -accuracy, precision, sensitivity and resolution, Working principle and applications of Sensors – pressure – strain gauge, Bourden gauge, temperature – RTD, thermocouple, proximity – capacitive sensor, ultrasonic sensor and accelerometer. Internet of things (IoT): Introduction, architecture of IoT,	11
	Implementation of smart city – street lighting, smart parking.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from	Each question carries 9 marks.	
eachmodule.	Two questions will be given from each	
• Total of 8 Questions,	module, outof which 1 question should be	60
eachcarrying 3 marks	answered.	
	• Each question can have a maximum of 3	
(8x3 = 24marks)	subdivisions.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply fundamental concepts and circuit laws to solve simple DC/AC electric circuits	K2
CO2	Develop an awareness on the fundamentals of electric power generation, transmission and distribution	К3
CO3	Compare different types of DC and AC motors	K2
CO4	Describe the fundamental concepts of electronic components and devices	К2
CO5	Outline the basic principles of an electronic instrumentation system	K2
CO6	Identify important applications of modern electronics in the contemporary world	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	3		2			2	1					2
CO3	3					1						2
CO4	3	1										2
CO5	3		1									2
CO6	3					2	1					2

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Basic Electrical Engineering	D P Kothari and I J Nagrath	Tata McGraw Hill	4/e 2019
2	Schaum's Outline of Basic Electrical Engineering	J.J.Cathey and Syed A Nasar	Tata McGraw Hill	
3	Basic Electronics: Principlesand Applications	Chinmoy Saha, Arindham Halder andDebarati Ganguly	Cambridge University Press	1/e 2018
4	Basic Electrical and Electronics Engineering	D. P. Kothari and I. J. Nagrath	McGraw Hill	2/e 2020
5	The Internet of Things: How Smart TVs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World	Michael Miller	QUE	1/e 2015
6	Basic Electronics and Linear Circuits	N N Bhargava D C Kulshreshtha and S. C. Gupta	McGraw Hill	2/e 2017
7	Electronic Communication Systems	Kennedy and Davis	McGraw Hill	6/e 2017

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the	Edition			
			Publisher	and Year			
1	Basic Electrical Engineering	D C Kulshreshtha	Tata McGraw Hill	2/e 2019			
2	Electrical Engineering Fundamentals	Del Toro V	Pearson Education	2/e 2019			
3	Basic Electrical Engineering	T. K. Nagsarkar, M. S.Sukhija	Oxford Higher Education	3/e 2017			
4	Electronics: A Systems Approach	Neil Storey	Pearson	6e 2017			
5	Electronic Devices and Circuit Theory	Robert L. Boylestad Louis Nashelsky	Pearson	11e 2015			
6	Principles of Electronic Communication Systems	Frenzel, L. E	McGraw Hill	4e 2016			
7	Internet of Things: Architecture and Design Principles	Raj Kamal	McGraw Hill	1/e 2017			
8	Electronic Communication	Dennis Roddy and John Coolen	McGraw Hill	4/e 2008			
9	Basic Electrical Engineering	D C Kulshreshtha	Tata McGraw Hill	2/e 2019			

SEMESTER S2

ENGINEERING ENTREPRENEURSHIP AND IPR

(Common to all Branches)

Course Code	UCEST206	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	40
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Develop a framework for identifying, curating and validating engineering-based businessideas.
- 2. Learn essential tools for understanding product-market fit and customer needs.
- 3. Create a comprehensive business plan for a new venture.
- 4. Gain foundational knowledge of Intellectual Property Rights (IPR) and their importance forstartups.
- 5. Develop skills for prototyping, stakeholder engagement, and team collaboration.

Module No.	Syllabus Description	Contact Hours
	Introduction to Ideation, Innovation & Entrepreneurship	
	What is Ideation?	
	Understanding Innovation	
	Frameworks for Innovation	
	The Entrepreneurial Mindset	
1	• Starting a Business, types formation statutory compliances.	9
1	Resources for Aspiring Entrepreneurs	
	Introduction to Intellectual Property Rights (IPR)	
	Types of IPR: Patents, trademarks, copyrights, trade secrets	
	Strategies for protecting intellectual property based on the	
	type of innovation	

	Role of IPR in securing funding and competitive advantage				
	Importance of building a strong team				
	Identifying roles				
	Skill sets				
	Team dynamics				
	Identifying Pain Points and problem statement				
	Idea Generation Techniques				
	Developing and Refining Ideas				
	Develop strategies for bringing your innovation to life				
	Problem and solution canvas preparation				
	Orientation and canvas introduction				
	Customer needs assessment				
	Market segmentation				
	Value proposition				
	Competitive analysis				
	Market entry strategy				
	Market validation				
	Regulatory and legal considerations				
	Customer profiling				
	Review of market research				
	Customer segmentation				
2	Customer profiling	9			
	Persona development				
	Validation and feedback				
	Prioritisation and selection				
	Communication and messaging				
	Competitor analysis				
	Identify competitors				
	Competitor profiling				
	SWOT analysis				
	Market positioning				
	Customer feedback and reviews				
	Pricing analysis				
	Differentiation strategy				

	B.1ccn 202	7 51752
	Benchmarking and improvement	
	Business plan preparation	
	Business plan framework	
	Market analysis	
	Product/ service description	
	Marketing and sales strategy	
	Operations plan	
	Financial projections	
	Risk management	9
	Prototype development plan preparation	
3	Prototype requirements analysis	
	Technical specifications	
	Development approach	
	Development timeline	
	Resource allocation	
	Testing and quality assurance	
	Iterative development and feedback loop	
	Documentation and version control	
	Prototype development Stakeholder engagement strategies	
	• Investors	
4	• Partners	9
4	• Customers	
	Advisors & Mentors	

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Micro Project	Internal Ex-1	Internal Ex-2	Total
5	35	10	10	60

Micro project / Comprehensive Business Plan:

The course will be evaluated based on a comprehensive Business Plan Report submitted and prototype development evaluation at the end of the course. The report should integrate learnings and activities from each module, demonstrating a deep understanding of the concepts and your ability to apply them to a chosen engineering venture.

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 Minimum 1 and Maximum 2 Questions from each module. Total of 6 Questions, each carrying 2 marks (6x2 = 12 marks) 	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. Each question carries 7 marks.	40
	(4x7 = 28 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Gain foundational knowledge of Innovation and Entrepreneurship, Intellectual Property Rights (IPR) and their importance for startups.	К2			
CO2	Develop a framework for identifying, curating and validating engineering-based business ideas.	К3			
CO3	Learn essential tools for understanding product-market fit and customer needs.	К3			
CO4	Create a comprehensive business plan for a new venture.	К6			
CO5	Develop skills for prototyping, stakeholder engagement, and team collaboration.	K4			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	3	3	3						
CO2	2	2	3	3	3	3	3	3	3			
CO3	2	2	2	2	2	3	3	3	3	2	2	2
CO4	3	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	The Engineering Handbook	Richard C.Dorf	CRC Press	2 nd edn, 2004
2	The Innovator's DNA	Clayton M. Christensenand Jeffrey H. Dyer	Harvard Business Review Press;	Revised edition (June 4, 2019)
3	Start with Why	Simon sinek	Portfolio	Reprint edition (December 27, 2011)
4	Business Model Generation	Alexander Osterwalder & Yves Pigneur	Wiley	2010
5	The Engineering Entrepreneur: A Practical Guide to Starting and Running a Successful Engineering Business in India	Saibal Gupta and Ashok Jhunjhunwala	Sage Publications	2011
6	Innovation and Entrepreneurship for Engineers	Bharat Bhushan and Seema Bhushan	CRS Press	2016
7	Indian Patent Law	P. Narayanan	Eastern Book Company	2 nd edn/ 2020
8	The Law of Copyright and Designs	B.L. Wadehra	Universal Law	5 th edn/2010
9	Intellectual Property Rights (Including IPR in the Digital Age)	Prabuddha Ganguli	Tata McGraw-Hill Education	2001
10	The Startup India Manifesto: A Guide to the Indian Startup Ecosystem	Rashmi Bansal and Deepinder Goyal	Westland Publications	2020

SEMESTER S1/S2

HEALTH AND WELLNESS

(Common to all Groups)

Course Code	UCHWT127	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	1:0:1:0	ESE Marks	0
Credits	1	Exam Hours	Nil
Prerequisites (if any)	None	Course Type	

Course Objectives:

- 1. To provide essential knowledge on physical activity, health, and wellness.
- 2. To ensure students understand body systems, exercise principles, nutrition, mental health, and disease management.
- **3.** To educate students on the benefits of yoga, the risks of substance abuse and basic first aid skills.
- **4.** To equip students with the ability to lead healthier lifestyles.
- **5.** To enable students to design effective and personalized exercise programs.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Human Body Systems related to Physical activity and its functions:	
	Respiratory System - Cardiovascular System.	
	Musculoskeletal System and the Major Muscle groups of the	
	Human Body. Quantifying Physical Activity Energy Expenditure	
	and Metabolic equivalentof task (MET)	
1	Exercise Continuum: Light-intensity physical activity, Moderate -	4
	intensityphysical activity, Vigorous -intensity physical activity.	
	Defining Physical Activity, Aerobic Physical Activity, Anaerobic	
	Physical Activity, Exercise and Health-Related Physical Fitness.	
	FITT principle to design an Exercise programme	
	Components of Health-related Physical Fitness: - Cardiorespiratory	
	Fitness- Muscular strength- Muscular endurance- Flexibility- Body	
	composition.	

	B.1ech 202	4 -01/02
	Concept of Health and Wellness: Health and wellness	
	differentiation, Factors affecting health and wellness. Mental health	
	and Factors affecting mental health.	
	Sports and Socialization: Sports and character building -	
	Leadership through Physical Activity and Sports	
2	Diet and nutrition: Exploring Micro and Macronutrients: Concept	2
	of Balanced diet - Carbohydrate & the Glycemic Index	
	Animal & Plant - based Proteins and their Effects on Human	
	Health Dietary Fats & their Effects on Human Health	
	Essential Vitamins and Minerals	
	Lifestyle management strategies to prevent / manage common	
	hypokinetic diseases and disorders - Obesity - Cardiovascular	
	diseases (e.g., coronary artery disease, hypertension) - Diabetes -	
	Osteoporosis - Musculoskeletal disorders (e.g., osteoarthritis, Low	
3	back pain, Kyphosis, lordosis, flat foot, Knock knee)	4
	Meaning, Aims and objectives of yoga - Classification and	-
	importance of of Yogic Asanas (Sitting, Standing, lying) Pranayama	
	and Its Types - Active Lifestyle and Stress Management Through	
	Yoga Understanding on substance abuse and addiction -	
	Psychoactive substances & its ill effects- Alcohol- Opioids-	
	Cannabis -Sedative -Cocaine -Other stimulants, including caffeine -	
	Hallucinogens -Tobacco -Volatile solvents.	
	First aid and principles of First Aid: Primary survey: ABC	
	(Airway,Breathing, Circulation). Qualities of a Good First Aider	
	First aid measures for: - Cuts and scrapes - Bruises - Sprains -	
4	Strains -Fractures - Burns - Nosebleeds.	2
	First Aid Procedures: Cardiopulmonary Resuscitation (CPR) -	
	HeimlichManeuver - Applying a sling	
	Sports injuries: Classification (Soft Tissue Injuries - Abrasion,	
	Contusion, Laceration, Incision, Sprain & Strain)	

Additional Topics

- Need and Importance of Physical Education and its relevance in interdisciplinary context. Understanding of the Endocrine System
- Developing a fitness profile
- Healthy foods habits for prevention and progression of Lifestyle Diseases. Processed foods and unhealthy eating habits.
- Depression Anxiety Stress
- Different ways of carrying an injured person. Usage of Automated external defibrillator

Course Assessment Method (CIE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Case Study/Micro project/Presentation	Activity evaluation	Total
10	20	20	50

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Explain the different human body systems and describe various types of physical activities along with methods to measure and quantify these activities.	К2			
CO2	Explain how to maintain or improve health and wellness through psychological practices, dietary habits, and sports activities.	K2			
CO3	Discuss about common hypokinetic disorders and musculoskeletal disorders, and describe the importance of leading a healthy lifestyle through the practice of yoga and abstaining from addictive substances.	К2			
CO4	Explain the basics of first aid and describe common sports injuries	К2			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				2		3		3	3	2		2
CO2				2		3		2	2			2
CO3						3		3				2
CO4				2		3						2

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Foundations of Nutrition	Bhavana Sabarwal	Commonwealth Publishers	1999
2	Anatomy and physiology in health and illness.	Ross and Wilson	Waugh, A., & Grant, A.	2022

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fit to be Well Essential Concept	Thygerson, A. L., Thygerson, S. M., & Thygerson, J. S.	Jones & Bartlett Learning.	2018				
2	Introduction to physical education, fitness, and sport.	Siedentop, D., & Van der Mars, H.	Human kinetics.	2022				
3	Substance Use Disorders. Manual for Physicians.	Lal, R., & Ambekar,A.	National Drug Dependence Treatment Centre, New Delhi	2005				
4	The exercise health connection-how to reduce your risk of disease and other illnesses by making exercise your medicine.	Nieman, D. C., & White, J. A	Public Health	1998				
5	ACSM's resource manual for guidelines for exercise testing and prescription.	Lippincott Williams & Wilkins.	American College of Sports Medicine.	2012				
6	Exercise Physiology: energy, nutrition and human performance.	Katch, F. I., Katch, V. L., & McArdle, W. D.	Lippincott Williams &Wilkins	2010				

Continuous Internal Evaluation Marks (CIE): for the Health and wellness course

Students will be evaluated as follows.

Title	Method of Evaluation
	Students must attend at least 75% of both theory and practical classes. They
	will receive 10 marks based on their class attendance.
Attendance	Students who do not meet the minimum attendance requirement for a course,
	as specified in the B. Tech regulations, will not be eligible to proceed to the
	next criteria.
	Assignments will be given to students to assess their understanding of the
Assignment /	subjects taught. Students will be required to make presentations on the
Assignment / Presentation	subjects taught in class, and their understanding of the subjects will be
rresentation	assessed. Based on the Assignments and Presentations the students will be
	awarded marks out of 20
	The Assignment / Presentation faculty handling the class will use the tests
	from the Fitness Protocols and Guidelines for ages 18+ to 65 years, as set
	forth by FIT India. Measurements will be taken for all the tests of the FIT
	India Fitness Protocol and the evaluation will be based on the benchmark
	score received for the following tests:
	1. V Sit Reach Test
Activity Evaluation	2. Partial Curl Up - 30 seconds
	3. Push Ups (Male) and Modified Push Up (Female)
	4. Two (2) Km Run/Walk
	Students who achieve a total benchmark score of 8 across the
	aforementioned 4 tests will be awarded pass marks for activity evaluation.
	Students who score better will be awarded a maximum mark of 20.
Activity Evaluation	Physically challenged and medically unfit students can opt for an objective
- Special	test to demonstrate their knowledge of the subjects taught. Based on their
Circumstances	performance in the objective test, they will be awarded marks out of 20.

Activity Evaluation	Students who enrolled themselves in the NCC during the course period
- Special	(between the start and end dates of the program) and attended 5 college
Considerations -	level parades will be awarded pass marks for activity evaluation. Students
NCC	who attend more parades will be eligible for a maximum mark of 20 based
	on their parade attendance.

Tests to evaluated as per Criterion - 2 and Benchmark Scores

V Sit Reach Test

How to Perform:

- 1. The subject removes their shoes and sits on the floor with the measuring line between their legs and the soles of their feet placed immediately behind the baseline, heels 8-12" apart.
- 2. The thumbs are clasped so that hands are together, palms facing down and placed on the measuring line.
- 3. With the legs held flat by a partner, the subject slowly reaches forward as far as possible, keeping the fingers on baseline and feet flexed.
- 4. After three tries, the student holds the fourth reach for three seconds while that distance is recorded.
- 5. Make sure there are no jerky movements, and that the fingertips remain level and the legs flat.

Infrastructure/Equipment Required:

- 1. A tape for marking the ground, marker pen, and ruler.
- 2. With the tape mark a straight line two feet long on the floor as the baseline, and a measurement line perpendicular to the midpoint of the baseline extending two feet on each side.
- 3. Use the marker pen to indicate every centimeter and millimeter along the measurement line. The point where the baseline and the measuring line intersect is the zero point.

Scoring: The score is recorded in centimeters and millimeters as the distance reached by the hand, which is the difference between the zero point (where the baseline and measuring line intersect) and the final position.

Scoring for V Sit Reach Test for Males

Level	Benchmark Score	Measurement (cm)
1	2	<11
2	4	12-13
3	6	14-17
4	7	18-19
5	8	20-21
6	9	22
7	10	>22

Scoring for V Sit Reach Test for Females

Level	Benchmark Score	Measurement (cm)
1	2	<14
2	4	15-16
3	6	17-19
4	7	20-21
5	8	22
6	9	23
7	10	>23

Partial Curl Up - 30 seconds

How to Perform:

- 1. The subject lies on a cushioned, flat, clean surface with knees flexed, usually at 90 degrees, with hands straight on the sides (palms facing downwards) closer to the ground, parallel to the body.
- 2. The subject raises the trunk in a smooth motion, keeping the arms in position, curling up the desired amount (at least 6 inches above/along the ground towards the parallel strip).
- 3. The trunk is lowered back to the floor so that the shoulder blades or upper back touch the floor.

Infrastructure/Equipment Required:

Flat clean cushioned surface with two parallel strips (6 inches apart), Stopwatch Scoring: Record the maximum number of Curl ups in a certain time period 30 seconds.

Scoring for Partial Curl Up - 30 seconds Test for Males

Level	Benchmark Score	Numbers
1	2	<25
2	4	25-30
3	6	31-34
4	7	35-38
5	8	39-43
6	9	44-49
7	10	>49

Scoring for Partial Curl Up - 30 seconds Test for Females

Level	Benchmark Score	Numbers
1	2	<18
2	4	18-24
3	6	25-28
4	7	29-32
5	8	33-36
6	9	37-43
7	10	>43

Push Ups for Male/Modified Push Ups for Female

How to Perform:

- 1. A standard push up begins with the hands and toes touching the floor, the body and legs in a straight line, feet slightly apart, the arms at shoulder width apart, extended and at a right angle to the body.
- 2. Keeping the back and knees straight, the subject lowers the body to a predetermined point, to touch some other object, or until there is a 90-degree angle at the elbows, then returns back to the starting position with the arms extended.

- 3. This action is repeated, and the test continues until exhaustion, or until they can do no more in rhythm or have reached the target number of push-ups.
- 4. For Female: push-up technique is with the knees resting on the ground.

Infrastructure/Equipment Required:

Flat clean cushioned surface/Gym mat

Scoring: Record number of correctly completed pushups.

Scoring for Push Ups for Male

Level	Benchmark Score	Numbers
1	2	<4
2	4	04- 10
3	6	11 -18
4	7	19-34
5	8	35-46
6	9	47-56
7	10	>56

Scoring for Modified Push Ups for Female

Level	Benchmark Score	Numbers
1	2	0-1
2	4	2 - 5
3	6	6 -10
4	7	11 - 20
5	8	21-27
6	9	27-35
7	10	>35

2 Km Run/Walk

How to Perform:

- 1. Participants are instructed to run or walk 2 kms in the fastest possible pace.
- 2. The participants begin on signal (Starting point)- "ready, start". As they cross the finish line, elapsed time should be announced to the participants.
- 3. Walking is permitted but the objective is to cover the distance in the shortest possible time.

Infrastructure/Equipment Required:

Stopwatch, whistle, marker cone, lime powder, measuring tape, 200 or 400 m with 1.22 m (minimum 1 m) width preferably on a flat and even playground with a marking of starting and finish line. You can also use any application your mobile phone that tells you the distance.

Scoring: Time taken for completion (Run or Walk) in min, sec.

Scoring for 2Km Run/walk for Male

Level	Benchmark Score	Minutes : Seconds
1	2	> 11:50
2	4	10:42
3	6	09:44
4	7	08:59
5	8	08:33
6	9	07:37
7	10	>07:37

Scoring for 2Km Run/walk for Female

Level	Benchmark Score	Minutes: Seconds
1	2	>13:47
2	4	12:51
3	6	12:00
4	7	11:34
5	8	10:42
6	9	09:45
7	10	>09:45

SEMESTER - S1/S2

LIFE SKILLS AND PROFESSIONAL COMMUNICATION (Common to all Branches)

Course Code	UCHUT128	CIE Marks	100
Teaching Hours/Week (L: T:P: R)	2:0:1:0	ESE Marks	0
Credits	1	Exam Hours	-
Prerequisites (if any)	None	Course Type	Activity-based learning

Course objectives:

- 1. To foster self-awareness and personal growth, enhance communication and interpersonal connection skills, promote effective participation in groups and teams, develop critical thinking, problem-solving, and decision-making skills, and cultivate the ability to exercise emotional intelligence.
- 2. To equip students with the necessary skills to listen, read, write & speak, to comprehend and successfully convey any idea, technical or otherwise.
- 3. To equip students to build their profile in line with the professional requirements and standards

Continuous Internal Evaluation Marks (CIE):

- Continuous internal evaluation is based on the individual and group activities as detailed in theactivity table given below.
- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. They should use online collaboration tools for group activities, report/presentation making and work management.
- Activities are to be distributed between 3 class hours (2L+1P) and 3.5 Self-study hours.
- Marks given against each activity should be awarded fully if the students successfully complete the activity.
- Students should maintain a portfolio file with all the reports and other textual materials generated from the activities. Students should also keep a journal related to the activities undertaken.

- Portfolio and journal are mandatory requirements for passing the course, in addition to the minimum marks required.
- The portfolio and journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through the HMC courses and Mini project course.
- Self-reflection questionnaire shall be given at the beginning of the semester, in between and at the end of the semester based on the guidelines in the manual of the course.

Table 1: Activity Table

Sl. No.	Activity	Class room (L) / Self Study (SS)	Week of completion	Group / Individual (G/I)	Marks	Skills	СО
1.1	Group formation and self-introduction among the group members	L	1	G	-	• Connecting with	
1.2	Familiarizing the activities and preparation of the time plan for the activities	L	1	G	-	group members Time management -	
1.3	Preparation of Gantt chart based on the time plan	SS	1	G	2	Gantt Chart	
2.1	Take an online personality development test, self reflect and report	SS	1	I	2	• Self-awareness Writing	CO1
2.2	Role-storming exercise 1: Students assume 2 different roles given below and write about their Strengths, Areas for improvement, Concerns, Areas in which he/she hesitates to take advice, Goals/Expectations, from the point of view of the following assumed roles i) their parent/guardian/mentor ii) their friend/sibling/cousin	L	1	I	2	 Goal setting - Identification of skills and setting goal Self-awareness Discussion in groups Group work- Compiling of 	CO1
2.3	Role-storming exercise 2: Students assume the role of their teacher and write about the Skills required as a B.Tech graduate Attitudes, habits, approaches required and activities to be practised during their B.Tech years, in order to achieve the set goals	SS	1	I	2	 Group work- Compiling of ideas Mind mapping 	CO1

B.Tech 2024 -S1/S2

				T	<i>D</i> .	.1ecn 2024 –31/32	
2.4	Discuss the skills identified through rolestorming excercise by each one within their own group and improvise the list of skills	L	1	G	2		CO1
2.5	Prepare a mind map based on the role- storming exercise and exhibit/present it in class	SS	2	G	2		CO1
3	Prepare a presentation on instances of empathy they have observed in their own life or in other's life	L	2 to 4	I	2	• Empathy	CO2
4.1	Each student connects and networks with a minimum of 3 professionals from industry/public sector organizations/other agencies/NGOs/academia (atleast 1 through LinkedIn)	SS	3	I	2	 Workplace awareness Listening Communication - interacting with 	
4.2	Interact with them to understand their workplace details including • workplace skills required • their work experience • activities they have done to enhance their employability during their B.Tech years • suggestions on the different activities to be done during B.Tech years Prepare a documentation of this	SS	3	I	4	people Networking through various media including LinkedIn Discussion in groups Report preparation Creativity	CO2
4.3	Discuss the different workplace details & work readiness activities assimilated by each through the interactions within their group and compile the inputs collected by the individuals Prepare the Minutes of the discussions	SS	3	G	2	Goal setting - Preparation of action plan	CO2
4.4	Report preparation based on the discussions	SS	4	G	3		CO4
4.5	Perform a role-play based on the workplace dynamics assimilated through interactions and group discussions	L	5	G	4		СОЗ
4.6	Identify their own goal and prepare an action plan for their undergraduate journey to achieve the goal	SS	5	I	2		CO1
5.1	Select a real-life problem that requires a technical solution and list the study materials needed	L	6	G	2		CO3
5.2	Listen to TED talks & video lectures from renowned Universities related to the problem and prepare a one-page summary (Each group member should select a different resource)	SS	6	I	2		CO4
5.3	Use any online tech forum to gather ideas for solving the problem chosen	SS	6	G	2		CO5
5.4	Arrive at a possible solution using six thinking hat exercise	L	7	G	3		СОЗ
5.5	Prepare a report based on the problem-	SS	7	G	2	=	CO4

B.Tech 2024 -S1/S2

	solving experience					3.1ech 2024 –31/32	
	solving experience						
6.1	Linkedin profile creation	SS	1	I	2		CO6
6.2	Resume preparation	SS	8	I	2	Profile-building	CO6
6.3	Self-introduction video	SS	8	I	3	1 Torne-building	CO6
7	Prepare a presentation on instances of demonstration of emotional intelligence	SS	9	I	2	Emotional intelligence	CO2
8	Prepare a short video presentation on diversity aspects observed in our society (3 to 5 minutes)	SS	10	G	3	Diversity	CO2, CO5
9	Take online Interview skills development sessions like robotic interviews; self-reflect and report	SS	10	I	2	• Interview skills	CO6
10	Take an online listening test, self-reflect and report	SS	11	I	2	Listening skills	CO6
11.1	Activities to improve English vocabulary of students	L	8	I/G	4		CO4
11.2	Activities to help students identify errors in English language usage	L	9	I/G	2		CO4
11.3	Activity to help students identify commonly misspelled words, commonly mispronounced words and confusing words	L	10	I/G	2	English vocabularyEnglish language skills	CO4
11.4	Write a self-reflection report on the improvement in English language communication through this course	SS	12	I	2	WritingPresentationGroup work	CO4
11.5	Presentation by groups on the experience of using online collaboration tools in various group activities and time management experience as per the Gantt chart prepared	L	11 to 12	G	2	• Self-reflection	CO4, CO5
12.1	Each group prepares video content for podcasts on innovative technological interventions/research work tried out in Kerala context by academicians/professionals/Govt. agencies/research institutions/private agencies/NGOs/other agencies	SS	12	G	4	 Audio-visual presentations creations with the use of technology tools Effective use of social media 	CO2, CO4, CO5
12.2	Upload the video content to podcasting platforms or YouTube	SS	12	G	1	platforms • Profile building	CO5
12.3	Add the link of the podcast in their LinkedIn profile	SS	12	G	1		CO5

1
CO1
CO1
CO1
CO2
CO2
e
cation -
g with
ng
arious
luding
n in CO2
on
on of
an
CO2
CO4
CO4
i & 1

B.Tech 2024 -S1/S2

						B.Tech 2024 –S1/	32
4.5	Perform a role-play based on the workplace dynamics assimilated through interactions and group discussions	L	5	G	4		CO3
4.6	Identify their own goal and prepare an action plan for their undergraduate journey to achieve the goal	SS	5	I	2		CO1
5.1							
5.1	Select a real-life problem that requires a technical solution and list the study materials needed	L	6	G	2		СОЗ
5.2	Listen to TED talks & video lectures from renowned Universities related to the problem and prepare a one-page summary (Each group member should select a different resource)	SS	6	Ι	2		CO4
5.3	Use any online tech forum to gather ideas for solving the problem chosen	SS	6	G	2		CO5
5.4	Arrive at a possible solution using six thinking hat exercise	L	7	G	3		CO3
5.5	Prepare a report based on the problem-solving experience	SS	7	G	2		CO4
6.1	Linkedin profile creation	SS	1	I	2		CO6
6.2	Resume preparation	SS	8	I	2		CO6
6.3	Self-introduction video	SS	8	I	3		CO6
7	Prepare a presentation on instances of demonstration of emotional intelligence	SS	9	I	2		CO2
8	Prepare a short video presentation on diversity aspects observed in our society (3 to 5 minutes)	SS	10	G	3		CO2, CO5
9	Take online Interview skills development sessions like robotic interviews; self-reflect and report	SS	10	I	2	Interview skills	CO6
10	Take an online listening test, self-reflect and report	SS	11	I	2		CO6

B. Tech 2024 –S1/S2

						B.Tech 2024 –S1/S.	<u> </u>
11.1	Activities to improve English vocabulary of students	L	8	I/G	4		CO4
						 English vocabulary English language skills Writing Presentation Group work Self-reflection 	
11.2	Activities to help students identify errors in English language usage	L	9	I/G	2		CO4
11.3	Activity to help students identify commonly mispelled words, commonly mispronounced words and confusing words	L	10	I/G	2		CO4
11.4	Write a self-reflection report on the improvement in English language communication through this course	SS	12	I	2		CO4
11.5	Presentation by groups on the experience of using online collaboration tools in various group activities and time management experience as per the Gantt chart prepared	L	11 to 12	G	2		CO4, CO5
12.1	Each group prepares video content for podcasts on innovative technological interventions/research work tried out in Kerala context by academicians/professionals/Gov t. agencies/research institutions/private agencies/NGOs/other agencies	SS	12	G	4	 Audio-visual presentations creations with the use of technology tools Effective use of social media platforms Profile building 	CO2, CO4, CO5
12.2	Upload the video content to podcasting platforms or YouTube	SS	12	G	1		CO5
12.3	Add the link of the podcast in their LinkedIn profile	SS	12	G	1		CO5
						L	I .

Table 2: Lab hour Activities (P): 24 Marks

Sl No	Activity	Marks	Skill	CO
1	Hands-on sessions on day-to-day engineering skills and a			
	self-reflection report on the experience gained:			
	Drilling practice using electric hand drilling machines.			
	2. Cutting of MS rod and flat using electric hand			
	cutters.	24	Basic practical	3
	3. Filing, finishing and smoothening using		engineering skills	
	electrically operated hand grinders.			
	4. MS rod cutting using Hack saw by holding the			
	work in bench wise.			
	5. Study and handling different types of measuring			
	instruments.			
	6. Welding of MS, SS work pieces.			
	7. Pipe bending practice (PVC and GI).			
	8. Water tap fitting.			
	9. Water tap rubber seal changing practice.			
	10. Union and valves connection practice in pipes.			
	11. Foot valve fitting practice.			
	12. Water pump seal and bearing changing practice.			
			7 01	
2	Language Lab sessions	-	Language Skills	4

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop the ability to know & understand oneself, show confidence in one's potential & capabilities, set goals and develop plans to accomplish tasks	К5
CO2	Develop the ability to communicate and connect with others, participate in groups/teams, empathise, respect diversity, be responsible and understand the need to exercise emotional intelligence	K5
CO3	Develop thinking skills, problem-solving and decision-making skills	К5
CO4	Develop listening, reading, writing & speaking skills, ability to comprehend & successfully convey any idea, and ability to analyze, interpret & effectively summarize textual, audio & visual content	K6
CO5	Develop the ability to create effective presentations through audio-visual mediums with the use of technology tools and initiate effective use of social media platforms & tech forums for content delivery and discussions	K6
CO6	Initiate profile-building exercises in line with the professional requirements, and start networking with professionals/academicians	К6

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1										1		3
CO2					1			3		3		3
CO3		1	1		1					1		1
CO4					1					1		2
CO5					1	1				1		2
CO6					1					1		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Life Skills & Personality Development	Maithry Shinde et.al.	Cambridge University Press	First Edition, 2022		
2	Emotional Intelligence: Why it can matter more than IQ	Daniel Goleman	Bloomsbury, Publishing PLC	25th Anniversary Edition December 2020		
3	Think Faster, Talk Smarter: How to speak successfully when you are put on the spot	Matt Abrahams	Macmillan Business	September 2023		
4	Deep Work: Rules for focused success in a distracted world	Cal Newport	PIATKUS	January 2016		
5	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017		
6	Interchange	Jack C. Richards, With Jonathan Hull, Susan Proctor	Cambridge publishers	5th Edition		

	Reference Books					
SI. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year		
1	Life Skills for Engineers	Remesh S., Vishnu R.G.	Ridhima Publications	First Edition, 2016		
2	Soft Skills & Employability Skills	Sabina Pillai and Agna Fernandez	Cambridge University Press	First Edition, 2018		
3	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017		
4	English Grammar in Use	Raymond Murphy,	Cambridge University Press India PVT LTD	5th Edition 2023		
5	Guide to writing as an Engineer	David F. Beer and David McMurrey	John Willey. New York	2004		

SEMESTER S2

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING WORKSHOP

(Common to Group C & D except for Civil Engineering Branch)

Course Code	GZESL208	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:2:0	ESE Marks (Internal only)	50
Credits	1	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. Demonstrate safety measures against electrical shocks
- 2. Develop familiarity with transformers, rheostats, batteries and earthing schemes
- **3.** Develop the connection diagram and identify the suitable accessories necessary for wiringsimple electric circuits
- 4. Identify various electronic components
- 5. Operate various measuring instruments
- 6. Design simple electronic circuits on breadboard and PCB
- 7. Build the ability to work in a team with good interpersonal skills.

Expt.	Experiments (Minimum of 7 Experiments to be done)
No.	(Minimum of 7 Experiments to be done)
1	a) Demonstrate the precautionary steps adopted in case of Electrical shocks.b) Identify different types of cables, wires, switches, fuses, fuse carriers, MCB,
	ELCB andMCCB, familiarise the ratings.
_	Wiring of a simple light circuit for light/ fan point (PVC conduit wiring) and a
2	6A plug socket with individual control.
3	Wiring of light/fan circuit using two-way switches. (Staircase wiring)
4	Wiring of fluorescent lamp and a power plug (16 A) socket with a control switch.
	Wiring of power distribution arrangement using single phase MCB distribution
5	board with ELCB, main switch and Energy meter.

	B.1ech 2024 –S1/S2				
6	Familiarization of step up and step-down transformers, (use low voltage				
	transformers) Measurement and representation of voltage and waveform to scale				
	in graph sheet with the help of CRO				
7	Familiarization of rheostats, measurement of potential across resistance elements				
7	and introducing the concept of relative potential using a DC circuit.				
	a)Identify battery specifications using different types of batteries.(Lead acid,				
8	Li Ion,NiCd etc.)				
	b) Familiarize different types of earthing (Pipe, Plate Earthing, Mat Schemes) and				
	ground enhancing materials (GEM).				
	ELECTRONICS WORKSHOP				
	(Minimum of 7 Experiments to be done) Familiarization/Identification of electronic components with specification				
	1				
1	(Functionality, type, size, colour coding, package, symbol and cost of -Active, Passive,				
	Electrical, Electronic, Electro-mechanical, Wires, Cables, Connectors, Fuses, Switches, Relays, Crystals, Displays, Fasteners, Heat sink etc.)				
	Drawing of electronic circuit diagrams using BIS/IEEE symbols and Interpret data				
2	sheets of discrete components and IC's				
	Familiarization/Application of testing instruments and commonly used tools.				
	Multimeter, Function generator, Power supply, CRO, DSO.				
3	Soldering iron, Desoldering pump, Pliers, Cutters, Wire strippers, Screw drivers,				
	Tweezers, Crimping tool, Hot air soldering and de-soldering station				
	Testing of electronic components using multimeter - Resistor, Capacitor, Diode,				
4	Transistor and JFET.				
	Printed circuit boards (PCB) - Types, Single sided, Double sided, PTH, Processing				
5	methods.				
	Design and fabrication of a single sided PCB for a simple circuit.				
	Inter-connection methods and soldering practice.				
6	Bread board, Wrapping, Crimping, Soldering - types - selection of materials and safety				
	precautions. Soldering practice in connectors and general-purpose PCB, Crimping.				
	Assembling of electronic circuit/system on general purpose PCB, test and show				
	thefunctioning (Any two)-				
7	• Fixed voltage power supply with transformer				
	• Rectifier diode				

	Capacitor filter
	• Zener/IC regulator
	• Square wave generation using IC 555 timer in IC base.
8	Assembling of electronic circuits using SMT (Surface Mount Technology) stations.
9	Introduction to EDA tools (such as KiCad or XCircuit)

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Total
5	45	50

End Semester Examination Marks (ESE): (Internal evaluation only)

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

• Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified Lab record.

Pass Criteria:

- A student must score a minimum of 50% overall, combining marks from both Continuous Internal Evaluation (CIE) and End Semester Examination (ESE).
- In addition, the student must secure at least 40% in the End Semester Examination (ESE).

The ESE shall be conducted internally, with evaluation carried out by a panel of faculty members. This panel must include at least one faculty member who was not involved in the Continuous Internal Evaluation (CIE) of the lab course.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Demonstrate safety measures against electrical shocks	K2				
CO2	Familiarise with transformers, rheostats, batteries and earthing schemes	K2				
CO3	Illustrate the connection diagram and identify the suitable accessories necessary for wiring simple electric circuits	К3				
CO4	Identify various electronic components	K2				
CO5	Select and Operate various measuring instruments	К3				
CO6	Apply the design procedure of simple electronic circuits on breadboard and PCB	К3				
CO7	Build the ability to work in a team with good interpersonal skills	К3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3						2
CO2	1					2	1					2
CO3	2					1						2
CO4	3					2						3
CO5	3				3	2			2			3
CO6	3		3	1	3	2	1		2			3
CO7									3	2		2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Electrical Design Estimatingand Costing	K B Raina and S K Bhattacharya	New Age International Publishers	2/e 2024				
2	Electrical Systems Design	M K Giridharan	I K International Publishing House Pvt. Ltd	3/e 2022				
3	Basic Electrical Engineering	D P Kothari and I J Nagrath	Tata McGraw Hill	4/e 2019				
4	Basic Electronics and LinearCircuits	NN Bhargava, D C Kulshreshtha and S C Gupta	Mc Graw Hill	2/e 2017				

Continuous Assessment with equal weightage for both specialisations (45 Marks)

1. Preparation and Pre-Lab Work (10 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (15 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (10 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record andmaintaining a well-organized fair record.

4. Viva Voce (10 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Evaluation Pattern for End Semester Examination with equal weightage in both specializations (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizingmaterials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment orprogramming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S2

CIVIL ENGINEERING DRAFTING LAB

(Common to CE and CV)

Course Code	GCESL218	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:2:0	ESE Marks (Internal Only)	50
Credits	1	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GCEST104/ Equivalent	Course Type	Practical

Course Objectives:

- 1. To introduce the fundamentals of Civil Engineering Drawingand understand the principles of planning.
- 2. To enable students to learn the drafting of buildings manually and using drafting software.

Details of Experiment

Expt. No	Experiment
1	Introduction to Civil Engineering Drawing, Concept of Scale, Plan, Section and Elevation. Drawing tools and accessories, Manual and Computer Aided Drafting Draw the view of simple objects (books, shelves, benches, etc.) adopting appropriate scales
2	Draw sectional details and elevation of paneled doors.
3	Draw sectional details and elevation of wooden glazed window.
4	Draw elevation, section and detailing of connection between members for steel roof truss
5	Draw plan, section and elevation of dog legged staircase
6	Prepare a model of a single storied building with card board from given drawings (Not expected to complete in the lab hours)
7	Draw plan, section and elevation of single storied residential building from the given line sketch.

8	Draw plan, section and elevation of two-storied framed building from the given line sketch.
9	Draw plan, section and elevation of an industrial building.
10	Introduction to Auto CAD: Preparation of CAD drawing of any of the building components (Experiments 2-5)
Preparation of CAD drawing of plan, section and elevation of single stories residential building (Experiment 7).	

Course Assessment Method (CIE: 50 Marks, ESE 50 Marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record. (Continuous Assessment)	Internal Exam	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

Mandatory requirements for ESE:

Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified Lab record.

Pass Criteria:

- A student must score a minimum of 50% overall, combining marks from both Continuous Internal Evaluation (CIE) and End Semester Examination (ESE).
- In addition, the student must secure at least 40% in the End Semester Examination (ESE).

The ESE shall be conducted internally, with evaluation carried out by a panel of faculty members. This panel must include at least one faculty member who was not involved in the Continuous Internal Evaluation (CIE) of the lab course.

Course Outcomes (COs)

At the end of the course the student will be able to:

	Course Outcome				
CO1	Illustrate ability to organize civil engineering drawings systematically and professionally	К2			
CO2	Illustrate the detailing of building components like doors, windows, roof trusses etc.	К2			
CO3	Develop the sketch of plan, front elevation and sectional elevation from line diagram.	К3			
CO4	Draft the plan elevation and sectional views of the residential buildings, industrial buildings, and framed structures using software.	К3			

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3							3	3	1		2
CO2	3							3	3	1		2
CO3	3							3	3	1		2
CO4	3				2			3	3	1		2

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), : No Correlation

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Building Drawing and Detailing	Dr. Balagopal T.S. Prabhu	Spades Publishers, Calicut	Revised Edition 2022			
2	Building Drawing With An Integrated Approach to Built Environment	Shah, M.G., Kale, C. M. and Patki, S.Y.	Tata McGraw Hill Publishing Company Limited, New Delhi	5 th edition 2017			
3	Building Planning and Drawing	M.V. Chitawadagi S.S. Bhavikatti	Dreamtech Press	2019			

	References				
Sl. No	Title of the Book				
1	National Building Code of India (refer the latest updates)				
2	Kerala panchayat building rules (refer the latest updates)				
3	Kerala Municipality building rules (refer the latest updates)				
4	IS962: 1989 (Reaffirmed 2022) Indian Standard Code of practice forarchitectural and building drawings				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

6. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

7. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

8. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

9. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

10. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

PROGRAMME CORE 1

SEMESTER S2

MECHANICS OF SOLIDS

(CIVIL ENGINEERING)

Course Code	PCCET205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)			60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GCEST103/ Equivalent	Course Type	Theory

Course Objectives:

- 1. To provide students with a fundamental understanding of the mechanics of deformable bodies and help them develop their analytical and problem-solving skills.
- 2. To introduce students to the various internal effects induced in structural members and their deformations due to different types of loading.
- **3.** To enable students to determine the stress, strain, and deformation of loaded structural elements.

Concept of stress and strain – types, stress – strain relation - Hooke's law, Young's modulus of elasticity. Stress-strain diagram of mild steel. Factor of safety, working stress. Axially loaded bars with uniform and uniformly varying cross section–stress, strain and	Module No.	Syllabus Description				
deformation. Temperature effects, temperature stress in composite bars. Shear stress and shear strain, Modulus of rigidity, simple shear, punching shear. Lateral strain, Poisson's ratio, volumetric strain. Bulk modulus of elasticity, relationships between elastic constants.	1	Hooke's law, Young's modulus of elasticity. Stress-strain diagram of mild steel. Factor of safety, working stress. Axially loaded bars with uniform and uniformly varying cross section—stress, strain and deformation. Temperature effects, temperature stress in composite bars. Shear stress and shear strain, Modulus of rigidity, simple shear, punching shear. Lateral strain, Poisson's ratio, volumetric strain.	11			

		4 –31/32
	Strain energy – concept. Strain energy due to normal stress. Strain	
	energy inbars carrying axial loads. Strain energy due to shear stress.	
2	Beams – different types. Types of loading on beams. Concept of	
	bending moment and shear force. Relationship between intensity of	11
	load, shear force and bending moment. Shear force and bending	
	moment diagrams of cantilever beams, simply supported beams and	
	overhanging beams fordifferent type of loads. Point of contraflexure.	
	Theory of simple bending, assumptions and limitations. Calculation	
	of normal stress in beams, moment of resistance. Shear stress in	
3	beams. Beams of uniform strength. Strain energy due to bending -	10
	calculation of strain energy in beams.	
	Derivation of differential equation for calculating the deflection of	
	beams – Macaulay's method.	
	Stresses on inclined planes for uniaxial and biaxial stress fields.	
	Principal stresses and principal planes, maximum shear stress in 2D	
	problems. Mohr's circle of stress for 2D problems.	
4	Short coluMin - direct and bending stress. Kern of a section.	10
	Slender coluMin - Euler's buckling load, slenderness ratio,	12
	limitation of Euler's formula. Rankine's formula.	
	Torsion of circular and hollow circular shafts, Power transmitted by	
	circularshafts and hollow circular shafts. Strain energy due to torsion.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject		Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from	Each question carries 9 marks.	
eachmodule.	Two questions will be given from each	
• Total of 8 Questions,	module, outof which 1 question should be	60
eachcarrying 3 marks	answered.	60
	• Each question can have a maximum of 3	
(8x3 =24marks)	subdivisions.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Recall the fundamental terms and theorems associated with	
CO1	mechanics of linear elastic deformable bodies.	K 1
GOA	Explain the behavior and response of various structural elements	
CO2	under various loading conditions.	K2
	Apply the principles of solid mechanics to calculate internal	
GOA	stresses/strains, stress resultants and strain energies in structural	
CO3	elements subjected to axial/transverse loads and bending/twisting	
	moments.	К3
	Choose appropriate principles or formula to find the elastic	
CO4	constants of materials making use of the information available.	К3
60.	Perform stress transformations, identify principal planes/ stresses	
CO5	and maximum shear stress at a point in a structural member.	К3
COL	Analyse the given structural member to calculate the safe load or	
CO6	proportion the cross section to carry the load safely.	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	-	-	-	-	-	-	-
CO2	2	2	-	-	-	-	-	-	-	-	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-
CO5	3	2	-	-	-	-	-	-	-	-	-	-
CO6	3	3	2	-	-	-	-	-	-	-	-	-

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Mechanics of Structures	H. J. Shah and S. B. Junnarkar	Charotar Publishing	32 nd Edition				
	A. T 1 1 C. C		House	2016 6 th Edition				
2	A Text book of Strength of Materials	R. K. Bansal	Laxmi Publications	2018				
3	Mechanics of Materials	B. C. Punmia, Ashok K. Jain, Arun Kumar	Laxmi Publications	Revised Edition 2017				
		Jain		2017				

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Engineering Mechanics of Solids	Egor P. Popov	Prentice Hall International Series	2 nd Edition 2015					
2	Mechanics of Materials	James M Gere, S.P. Timoshenko	CBS Publishers and Distributors	2 nd Edition 2004					
3	Mechanics of Materials	R.C. Hibbeler	Pearson	10 th Edition 2018					
4	Strength of Materials	S. Ramamrutham and R.Narayanan	Dhanpat Rai Publishing Co	18 th Edition 2014					
5	Strength of Materials	Rattan	McGraw Hill Education India	3 rd Edition 2016					

	Video Links (NPTEL, SWAYAM)				
Sl No.	Link ID				
1	https://archive.nptel.ac.in/courses/105/104/105104160/				

SEMESTER S2 PROCESS CALCULATIONS

(CHEMICAL ENGINEERING)

Course Code	PCCHT205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-1-0-0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	NIL	Course Type	Theory

Course Objectives:

- 1. To establish fundamental principles of Chemical Engineering in a simple and up-front manner and to provide the broad background for applying these principles to theoretical and industrial problems.
- **2.** To introduce the basic concepts of composition calculations practiced in chemical processes, gas laws, material and energy balances etc. which are at the fundamental and core areas of Chemical Engineering course.

Module	Syllabus Description	Contact				
No.		Hours				
	Basic Concepts: Introduction to Chemical Engineering, Chemical					
	process Industry, Unit Operations and Unit Processes.					
	Units and Dimensions, Conversion of units, Conversion of					
	equations- problems.					
	Composition of solids, liquids and solutions - weight percent, mole					
	percent, molarity, normality, molality, ppm					
1	Gaseous mixtures, Composition of gaseous mixtures, Average	11				
	molecular weight and density, Ideal gas law, Dalton's Law,	11				
	Amagat' Law, Vander Waals equation					
	Vapour Pressure: Effect of temperature on vapour pressure -					
	Antoine Equation, Clausius-Clapeyron equation.					

	Problem solving in Equations of state, Vapor Pressure calculation		
	using EXCEL /Matlab/ SCILAB/PYTHON etc only for self-study		
	/microproject/assignment.		
_	Material Balance for unit operations- Introduction, key component		
2	Material balance for unit operations like mixing, distillation, drying,		
	evaporation, absorption, crystallization, extraction, leaching.	11	
	Material Balance for unit processes - Definition of terms -		
	limiting reactant, excess reactant, percentage yield, conversion,		
	selectivity		
3	Orsat analysis, Material Balance for combustion, Recycle, bypass and		
	purge operations.	11	
	Problem solving in Material balance using EXCEL/ Matlab/		
	SCILAB/ PYTHON etc only for self-study/microproject/assignment.		
	Energy Balance: Heat capacity of solids, liquids and gaseous		
	mixtures, Kopp's Rule, Latent Heats-Heat of fusion, heat of		
	vaporization, Estimation of Heat of Vaporization - Kistyakowsky		
4	Equation, Trouton's rule, Watson equation.		
4	Heat effects accompanying chemical reactions - Standard heats of		
	reaction, standard heat of combustion, and standard heat offormation,	11	
	Hess's law of constant heat summation. Effect of temperature and		
	pressure on heat of reaction, temperature of reaction, adiabatic		
	reaction temperature.		

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from eachmodule. Total of 8 Questions, eachcarrying 3 marks (8x3 = 24marks)	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain fundamentals of Chemical Engineering, units and dimensions and estimate chemical composition and other physical quantities of solids, liquids, solutions, gases and mixtures	К3
CO2	Develop and solve basic material balance equations for the unitoperations employed in process industries.	К3
CO3	Develop and solve basic material balance equations for the unit processes employed in process industries.	К3
CO4	Develop and solve energy balance equations for various physical andchemical processes.	К3
CO5	Implement and run software programs for solving stoichiometric problems	K5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3		3				1			3

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Stoichiometry and Process Calculations	K.V. Narayanan, B. Lakshmikutty	Prentice-Hall of India Pvt. Ltd.	2 nd edition 2016					
2	Stoichiometry	B.I. Bhatt, S.M. Vora	McGraw Hill Publishing Company Limited.	6 th edition 2021					
3	Basic Principles & Calculations in Chemical Engineering	David M. Himmelblau, James B. Riggs	Prentice-Hall of India Pvt. Ltd.	8 th edition 2016					

	Reference Books								
Sl. Title of the Book		Name of the Author/s	Name of the Publisher	Edition and Year					
1	Chemical Process PrinciplesPart-I: Material and Energy Balances	O.A.Hougen, K.M.Watson, R.A.Ragatz	CBS Publishers NewDelhi	2 nd Edition1962					
2	Elementary Principles of Chemical Processes	Richard M. Felder, Ronald W. Rousseau	Wiley	4 th edition 2018					

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/103/105/103105209/					
2	https://archive.nptel.ac.in/courses/103/105/103105209/					
3	https://archive.nptel.ac.in/courses/103/105/103105209/,					
4	https://archive.nptel.ac.in/courses/103/105/103105209/					

SEMESTER S2

MATERIAL SCIENCE AND ENGINEERING

(MECHANICAL ENGINEERING)

Course Code	PCMET205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To recognize the importance of the microstructures and physical properties of the materials to enable the material selection process.
- **2.** To develop an understanding of the basic principles of phase transformations and apply those principles to engineering applications.

Module No.	Syllabus Description					
1	Introduction to material science: Classification of engineering materials, Structure of solids- Metallic, Ionic and covalent bonding. Properties based on atomic bonding. Crystallography: - SC, BCC, FCC, HCP structures, APF - theoretical density simple problems – Miller Indices: - crystal plane and direction - Modes of plastic deformation:- Slip and twinning	11				
	Crystal imperfections – - Point defects, Line defects, Surface defects, Volume defects. edge and screw dislocations – Burgers vector –					
2	interaction between dislocations. Polishing and etching, Metallographic characterisations of metallic	11				

	B.1ech 202	4 –31/32
	materials. SEM, TEM- Grain size determination	
	Wear, Roughness, Corrosion. Diffusion in solids, fick's laws,	
	mechanisms, applications of diffusion in mechanical engineering, simple	
	problems. Applications of Diffusion.	
	Mechanical properties: Tensile properties, Hardness and hardness	
	measurement, Impact properties, Fatigue, Creep, DBBTT, Super	
	plasticity.	
	Types of steels- low, medium and high carbon steels, stainless steels,	
3	alloy steels and their applications. Properties and applications of	11
3	composites, super-alloys, intermetallic- Stoichiometric and Non	11
	stoichiometric compounds- Applications. maraging steel, Titanium-	
	Ceramics:- structures, applications	
	1 1	
	Phase diagrams: - need of alloying - classification of alloys - Hume	
	Rothery's rule - equilibrium diagram of common types of binary	
	systems: isomorphous (Cu- Ni) eutectic (Pb- Sn), lever rule and	
	Gibb's phase rule.	
4	Detailed discussion on Iron- Carbon equilibrium diagram with	11
4	microstructure and properties -Heat treatment: - TTT, CCT diagram,	11
	applications - Tempering- Hardenability, Jominy end quench test,	
	applications-Surface hardening methods.	
	Tr	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from	• Each question carries 9 marks.	
eachmodule.	Two questions will be given from each	
• Total of 8 Questions,	module, outof which 1 question should be	60
eachcarrying 3 marks	answered.	60
	• Each question can have a maximum of 3	
(8x3 = 24marks)	subdivisions.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Understand the crystal structures (BCC, FCC, and HCP), and their relationship with the properties.	K2	
CO2	CO2 Understand the crystallographic defects through metallography		
CO3	Compare the material properties among different materials for material selection.	К2	
CO4	Define and differentiate the microstructure of metallic materials using phase diagrams.	K4	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	2										
CO3	3											
CO4	3	2										

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Material Science and Engineering, 2014	Callister William.D	John Wiley	2014			
2	Engineering Metallurgy part-I	Higgins R.A	Arnold	6 th ,1998			

	Reference Books						
Sl. No							
1	The science and engineering of materials	Donald R Askeland	Thomson				
2	Introduction to Physical Metallurgy	Avner H Sidney	Tata McGraw Hill	2009			
3	Material Science and Engineering	Raghavan V	Prentiece hall	2004			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/113/105/113105103/				
2	https://archive.nptel.ac.in/courses/113/105/113105103/				
3	https://archive.nptel.ac.in/courses/113/105/113105103/				
4	https://archive.nptel.ac.in/courses/113/105/113105103/				

SEMESTER S2 AUTOMOBILE POWER PLANT

(AUTOMOBILE ENGINEERING)

Course Code	PCAUT205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

- 1. Understand the functions of internal combustion engine components, valve actuating mechanisms, air-fuel systems, and Ignition systems.
- 2. Study the influence of fuel injection methods, ignition timing, and exhaust gas treatment on the performance of IC engines.
- 3. Understand the importance and components of cooling and lubrication systems in IC engines.

Module No.	Syllabus Description	
1	ENGINES: Basic engine nomenclature, Classification & Applications of IC Engines. Constructional details of engine components: Cylinders – types, Cylinder liners, Engine block, Cylinder head, Gasket, Piston, Piston rings, Piston pins, Connecting rod, Crank shaft, Flywheel, Cam shaft, Valve and valve mechanism systems - OHV, OHC, DOHC. Valve Timing Diagram & Port timing diagrams, Inlet and Exhaust manifold.	11

	FUEL SUPPLY SYSTEM:	
	Air fuel mixture requirements and types, Octane & Cetane Rating.	
	Types offuel feed systems, fuel tank, fuel pumps and fuel filters, air	
2	filter types. Carburetion, simple carburetor, Fuel injection system -	11
	GDi, MPFi.	11
	Fuel supply system in diesel engines: components of diesel fuel	
	system, feed pump, injection pump, injection nozzles and types,	
	Governors.	
	Electronic Unit Injectors, CRDi system	
	IGNITION & EMISSION SYSTEM:	
	Ignition system in IC engines: Ignition System Overview Battery	
	ignition system, magneto ignition system, distributor less ignition -	
	CDI & Coil on plug type of ignition system	
	Pollutants in IC Engines. NOx, CO, unburned hydrocarbons, smoke	
	and particulate. Non exhaust emissions and control	
	methods, Exhaust gas treatment Catalytic converter - Thermal	11
3	reactor - Particulate trap, Exhaust Gas Recirculation (EGR)	11
	Systems. Exhaust mufflers, Types of mufflers.	
	COOLING & LUBRICATION SYSTEM	
	Need for cooling, types- air cooling system and liquid cooling	
	systems- components- radiator, water pump and cooling fan.	
4	Properties of coolants and additives. Requirements of lubrication	
_	systems. Types of Lubrication system. SAE Ratings Multi grade	11
	lubricants, Pre-lubrication systems. Supercharging and	11
	Turbocharging in I C Engines.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from	Each question carries 9 marks.	
eachmodule.	Two questions will be given from each	
• Total of 8 Questions,	module, outof which 1 question should be	
eachcarrying 3 marks	answered.	60
	• Each question can have a maximum of 3	
(8x3 =24marks)	subdivisions.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Understand constructional details and working of various internal combustion engine	К2	
CO2	Discuss the fuel system & air induction system for IC engines	K2	
CO3	Explain the Ignition system & emission in IC engines	K2	
CO4	Understand the Cooling and lubrication system for IC engines	K2	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	2	1	-	-	-	-	-	-	-	-	-
CO3	2	2	1	-	-	-	-	-	-	-	-	-
CO4	3	3	1	-	-	-	-	-	-	-	-	-

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Internal Combustion Engines	Ganesan. V	Tata McGraw-Hill Publishing Co	4 th Edition 2017					
2	Internal Combustion Engines	Ramalingam K.K	Sci-Tech Publications	3 rd Edition 2018					
3	Internal Combustion Engines	R.K. Rajput	Laxmi Publications.	2 nd Edition 2016					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	A course in internal combustionengines	Mathur. M.L.,Sharma. R.P	Dhanpatrai publication	2016					
2	Internal Combustion Engines Fundamentals	John Heywood	McGraw Hill International Edition	2 nd Edition 2018					
3	Fuels & Combustion	Smith, Marion L. And Karl W. Stinson	McGraw-Hill						

	Video Links (NPTEL, SWAYAM)							
Sl. No	Sl. No Link ID							
1	I C Engines and Gas Turbines https://archive.nptel.ac.in/courses/112/103/112103262/# Fundamentals of Automotive Systems https://archive.nptel.ac.in/courses/107/106/107106088							

SEMESTER S2 TRANSDUCERS & MEASUREMENTS

(MECHATRONICS ENGINEERING)

Course Code	PCMRT205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide students with a comprehensive understanding of various types of transducers used in engineering applications, including their principles of operation and characteristics.
- 2. To familiarize students with different measurement techniques and instruments commonly used in engineering, enabling them to apply these techniques effectively for accurate measurement and analysis in practical scenarios

Module No.	Syllabus Description						
1	Introduction to transducers and sensors Definition of sensors and transducers –Mechanical devices as Primary Detectors-Pressure Sensitive Primary Devices- Temperature Detectors- Hydro pneumatic Devices. Electric Transducers. Advantages of Electrical Transducers. Classification of Electrical Transducers- Primary and Secondary Transducers, Active and Passive Transducers, Analog and Digital Transducers. Electrical Phenomena Used in Transducers.	11					

	B.1ech 202	4 -31/32				
	Resistive Transducers- Potentiometers, Strain gauges-gauge factor-					
	Resistance Thermometers, Thermistors. Capacitance transducers -					
2	piezo electric transducers – Inductive transducers: LVDT	11				
	characteristics-photoelectric sensors - Hall Effect transducers -					
	measuring circuits-calibration- Optical transducers. Ionization					
	transducers. Digital Transducer. Shaft Encoder.					
	Measurements and Measurement Systems					
	Managements Significance of Managements Matheda of					
	Measurements- Significance of Measurements- Methods of					
	Measurement: Direct &Indirect Methods-Instruments-Mechanical,					
	Electrical and Electronic instruments- Classification of Instruments-					
3	Analog and Digital Modes of Operation-Functions of Instruments and	11				
3	Measurement Systems- Applications of Measurement Systems-					
	Elements of a Generalized Measurement System-Characteristics of					
	Instruments and Measurement Systems: Measurement system					
	Performance- Static Calibration- Static Characteristics- Errors in					
	Measurements-True Value-Static Error- Static Correction -Scale					
	Range and Scale Span- Error Calibration Curve- Reproducibility and					
	Drift- Accuracy and Precision, Linearity. Hysteresis-type of errors-					
	classification of errors					
	DC bridges: introduction, sources and detectors-General Equation-					
	Types of bridges: Wheatstone, Kelvin bridge-					
	AC bridges: introduction, sources and detectors-General equation.					
4		11				
	Maxwell's inductance and Maxwell's inductance -capacitance					
	bridge.					
	Cathode ray oscilloscopes: principles, construction and limitations-					
	Digital storage oscilloscopes: principles- Measurements using CRO s					
	and DSOs- Recording instruments: Strip chart recorder, X-Y Plotter,					
	LCD displays.					
		1				

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total	
• 2 Questions from	Each question carries 9 marks.		
eachmodule.	Two questions will be given from each		
• Total of 8 Questions,	module, outof which 1 question should be	60	
eachcarrying 3 marks	answered.	60	
	• Each question can have a maximum of 3		
(8x3 = 24marks)	subdivisions.		
	(4x9 = 36 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Summarize the concepts of sensors, transducers and classify various transducers.	K2				
CO2	Apply the principles and functions of various types of Transducers inmeasuring systems.	К3				
CO3	Illustrate the working principles of electronic measuring instruments and identify various types of errors in measuring systems and choose methods for minimization of the errors.	К3				
CO4	Explain the concepts of CRO, DSO, various recording devices.	К2				
CO5	Understand and utilize various measurement systems, enhancing their capability to apply theoretical knowledge in practical scenarios	К2				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				1							3
CO2	3				1							3
CO3	3	2										3
CO4	2											3
CO5	3											3

	Text Books									
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year						
1	A Course in Electronic Measurements and Instrumentation	A. K. Sawhney	Dhanpat Rai & Co.	2015 Edition						
2	Electronic Instrumentation and Measurements	David A Bell	Oxford University Press	3rd Edition 2013						
3	Electronic Instrument Design	Kim R Fowler	Oxford reprint	2 nd Edition, 2015						

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Sensors and Transducers,	D .Patranabis	РНІ	2nd edition, 2003			
2	Electronic Instrumentation and Measurements	Kalsi HS	Mc Graw hill	4th edition, 2019.			
3	Electrical Measurements and Measuring systems	Golding E W and Widdis F C	Wheeler&co	1993			

Video Links (NPTEL, SWAYAM)					
Link ID					
https://www.youtube.com/watch?v=1uPTyjxZzyo					
https://onlinecourses.nptel.ac.in/noc23_ee105/preview					
https://nptel.ac.in/courses/112107242					
https://onlinecourses.nptel.ac.in/noc23_ee112/preview https://www.youtube.com/watch?v=0FVzYLEdSA8					

SEMESTER S2

FUNDAMENTALS OF MANUFACTURING SYSTEMS AND PROCESSES

(PRODUCTION ENGINEERING)

Course Code	PCPET205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-1-0-0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Summarize about Manufacturing Systems and Strategies
- 2. Identify the appropriate process for a given engineering material.

Module No.	Syllabus Description					
1	Introduction to Manufacturing Systems, Classification of Manufacturing Systems; Discreet Manufacturing, Repetitive Manufacturing, Job Shop Manufacturing, Batch Manufacturing, Continues manufacturing, Additive Manufacturing. Manufacturing Strategies; Lean Manufacturing, Mass Customization, Green Manufacturing, Total Quality Management, Agile Manufacturing, Just in Time. Original Equipment Manufacturer, Reconfigurable Manufacturing, Assembly Lines, Concept of Inventory. (Should cover basics concepts only)	11				

2	Glass and Ceramic Manufacturing; Relevant Properties of glass and ceramics, Processing Steps; Mixing, melting, forming, cooling and finishing, equipment's used for processing: rotary kiln, tumbler, ball milling, hydraulicpresses & jiggers. Plastic Manufacturing; Relevant Properties of Plastics, Processing Methods; Plastic Extrusion, Injection Moulding, Rotational Moulding, Plastic extrusion & injection blow moulding, Vacuum casting. Thermoforming & Vacuum forming, Compression moulding.	
	Rubber Manufacturing; Relevant properties of Rubber, Processing Steps; mastication, mixing, shaping, , calendaring, curing. Textile Manufacturing: Weaving; Cutting. Spinning, Yarn production, Dyeing, Pattern making, Bleaching, Grading, Packing, Wet processing. (Should cover basics concepts only)	
3	Metal industries –Ferrous Metals and Alloysraw materials for iron making, blast furnace and electric furnace operation, shaping and finishing, application of iron and steel. Non-Ferrous Metals, examples of nonferrous metals- extraction of ore, smelting & refining, shaping and finishing, alloying, application of nonferrous metals. (Should cover basics concepts only)	11
4	Wood based integrated Pulp and paper mill – Wood chips production, Batch digester, Pulp washing filters, bleaching, drying and calendaring. Cement manufacturing process- flow diagram, raw mill circuit, cement beneficiation, Manufacturing method and equipment used in Portland cement manufacture Petroleum refining process- flow diagram illustrating refining of crude oil well to saleable product. (Should cover basics concepts only)	11

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	Two questions will be given from each module,	
• Total of 8 Questions, each	out of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 = 24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Summarize about Manufacturing Systems and Strategies	K2			
CO2	Explain the manufacturing processes involved in polymer, ceramic and textile industries	К2			
CO3	Classify the manufacturing processes involved in metal industries.	К2			
CO4	Outline the manufacturing processes involved in cement paper and petroleum industries.	K2			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3				2				2	
CO2	3	3	3				2				2	
CO3	3	3	3				2				2	
CO4	3	3	3				2				2	

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Fundamentals of Modern Manufacturing, Materials, Processes and Systems	Mikell P Groover	Wiley	7th Edition, 2019			

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Ceramics, Glass and Glass-Ceramics	Francesco Baino (Editor),Massimo Tomalino (Editor), Dilshat Tulyaganov(Editor)	Springer.	Kindle edition 2021	
2	Modern Plastic Handbook	Charles A. Harper	McGraw Hill	1999	
3	The Complete Book on Rubber Processing and Compounding Technology	NIIR Board of Consultantsand Engineers	NIIR Board of Consultants and Engineers	2011	
4	Textbook of Fabric Science: Fundamentals to Finishing	Seema Sekhri	РНІ.	Kindle edition 2011	
5	Ironmaking and Steelmaking: Theory and Practice	Ahindra Ghosh	PHI.	1 st edition 2008	
6	Manufacturing Technology of Non- Ferrous Metal Products	Brahmpal Bhardwaj	Engineers India Research Institute	1 st edition 2012	
7	The chemical process industries	R . Norris Shreve	Mc Graw Hill	2 nd edition 1956	
8	Energy performance assessment for equipment and utility systems	Buraeu of energy efficiency	Buraeu of energy efficiency	4 th edition 2015	

SEMESTER S2

FUNDAMENTALS OF AERONAUTICS AND AIRCRAFT INSTRUMENTS

(AERONAUTICAL ENGINEERING)

Course Code	PCAOT205	CIE Marks	40
Teaching Hours/Week (L: T:P:R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	NIL	Course Type	Theory

Course Objectives:

- 1. Introduce the basic concepts of aeronautics
- 2. Discuss about instruments, display and navigation systems employed in aircraft.

Module No.	Syllabus Description			
1	Atmospheric properties: Physical properties and structure of atmosphere-temperature, pressure and altitude relations. Basic concepts of Aeronautics: Laws of motion applied to aeronautics. Aerodynamic forces, Nomenclature and Classification of airfoil, mean aerodynamic chord, Centre of pressure and aerodynamic center, Types of drag - reduction techniques, Aerofoil characteristics: lift and drag curves, Speed of sound, Mach number, aspect ratio, wing loading. (Numericals)	11		
2	Aircraft Classification and Components: Aircraft classifications. Airplane configurations based on wing, landing gear, engines attachments. Components of Wing, Fuselage-Fuselage Construction Truss, Monocoque, Semi-Monocoque. Control surfaces and maneuvers.	9		

B.Tech 2024 -S1/S2

	Basic Instruments: Pitot static system, Pitot static instruments:				
3	Altimeter, Vertical speed indicator, Airspeed indicator. Mach meter,				
	Gyroscope, heading indicator, Turn coordinator, Engine				
	instruments: Temperature gauges, Pressure gauges, Tachometer:				
	Mechanical and Electrical. Modern control systems-Fly by wire				
	systems and Auto pilot systems.				
	Cockpit Display systems: Head Up Display, Head Down Display,				
	Helmet Mount Display, Multifunctional Keyboard, Multifunctional				
4	Display, DirectVoice Input, Hands on Throttle and Stick.				
	Navigation systems: Distance Measuring Equipment, Very High	11			
	Omnidirectional Range, Automatic Direction Finder, Instrument				
	Landing System, Microwave Landing Systems, Inertial Navigation				
	Systems, Global Positioning System.				

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions

Part A	Part B		
• 2 Questions from each	• Each question carries 9 marks.		
module.	Two questions will be given from each module,		
• Total of 8 Questions, each	outof which 1 question should be answered.	60	
carrying 3 marks	• Each question can have a maximum of 3		
	subdivisions.		
(8x3 = 24marks)	(4x9 = 36 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Understand the structure of atmosphere and basic concepts of aircraft	K2
CO2	Describe the classification, components, and maneuvers of airplane	K2
CO3	Explain the basic working principles of various aircraft instruments.	K2
CO4	Understand the principles and working of various cockpit display and aircraft navigation systems.	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	2
CO2	3	-	-	-	-	-	-	-	-	-	-	2
CO3	3	-	-	-	-	-	-	-	-	-	-	2
CO4	3	-	-	-	-	-	-	-	-	-	-	2

	Text Books					
Sl. No	Title of the Book Name of the Author/s Name of the Publisher		Edition and Year			
1	Introduction to Flight	J D Anderson Jr. and Mary L.Bowden	Mc Graw Hill	Ninth Edition 2021		
2	Aircraft Instruments	EHJ Pallet	Pearson	Second Edition 2009		
3	Mechanics of Flight	AC Kermode, RH Barnard, D R Philpott	Pearson	Eleventh Edition 2006		
4	Flight Physics	E Torenbeek, H.Wittenberg	Springer	2009		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Flight without Formulae	A C Kermode	Pearson			
2	The Avionics Hand Book	Spitzer CR	CRC Press	Second Edition 2006		
3	Avionics Training systems, Installation and troubleshooting	Len Buckwalter	Avionics Communication	Second Edition 2005		
4	Fundamentals of Flight	Richard S Shevell	Pearson			

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
Module - I	archive.nptel.ac.in/courses/101/104/101104061/			
Module - II	archive.nptel.ac.in/courses/101/101/101101079/			
Module - III & IV	archive.nptel.ac.in/courses/101/104/101104061/			

CROP PRODUCTION & PROTECTION TECHNOLOGIES

(AGRICULTURE ENGINEERING)

Course Code	PCAGT205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To understand the principles of agricultural crop production and protection practices of different crops
- 2. To understand the role and importance of Agricultural Engineers in crop production
- 3. To equip the students with the basic principles of cropping and cultivation practices of important crops of Kerala.

Module No.	Syllabus Description				
1	Introduction to agriculture -Importance of agricultural science for crop production - Branches of agricultural science-National and international agricultural research Institutes - Basic elements of crop production - Agricultural seasons in India and Kerala. Classification of crops based on the intensity of cultivation, uses, life span, growth habit, and climatic response and/or habitat. Factors affecting crop growth and production: genetic (internal) and environmental (external) factors. Crop management through environmental modification and adaptation of crops to the existing	11			

	B.1ech 202	14 S1/S2
	environment through crop cultural practices.	
	Competition among crop plants -Selection of crops- seed rate,	
	seed treatment, raising of nursery and production of quality	
	planting material. Field preparation for crops including systems of	
	tillage; Spacing and arrangement of crop plants; Establishment of	
	an adequate crop stand and ground cover. Types and methods of	
	harvest	
	Crop rotation, cropping systems, cropping scheme, relay cropping,	
	mixed cropping and intercropping.	
	mixed cropping and intercropping.	
	Soil-water-plant relationship, crop coefficients, water requirement of	
	crops and critical stages for irrigation; Weeds and their management	
_	in crops;	
2		11
	Time and method of sowing of major field crops, seed rate for	
	important crops; Methods and time of application of manures and	
	fertilizers, fertigation;	
	Horticulture- Branches-Scope and importance; Seed rate and seed	
	treatment for vegetable crops; Macro and micro propagation	
	methods; Types of plant growing structures; Pruning and training;	
	Orchard- site selection, layout andManagement of orchard.	
	Definition of soil. Different functions of soil in our eco system	
	namely as medium of plant growth, Regulator of water supply,	
	Recycle of raw materials, Modifier of atmosphere, Habitat for	
	organisms, Engineering medium etc. Soil profiles and horizons: O,	
	A, B and C. Soil as an interface of solids, water and air and their	
	percentage composition.	
3	Formation of soils: Weathering of rocks and minerals, Physical	11
	weathering, Biogeochemical weathering, Factors influencing soil	
	formation, soil taxonomy orders. Important soil physical properties:	
	texture, structure, density, porosity, consistency, temperature.	
	The concepts of soil fertility and productivity. The essential	
	elements and their functions in plants. Soil colloids - properties -	
	nature - types and significance. Layer silicate clays - their genesis	

	B.1ech 2024 –31/32						
	and sources of charges. Adsorption of ions - ion exchange - CEC						
	and AEC - factors influencing ion exchange and its significance.						
	Concept of pH - soil acidity - brief overview of saline, sodic and						
	calcareous soils. Soil organic matter – composition –						
	decomposability – humus.						
	Organic and inorganic fertilizers- its Importance- soil reactions.						
	Gypsum requirement for reclamation of sodic soils and neutralizing						
	RSC; Liquid fertilizers and their solubility and compatibility.						
4	Major pests and diseases of field crops and horticultural crops and their management. Integrated methods of managing water, nutrients and plant protection. Crop production technology of field crops in Kerala: cereal crops, grain legumes, oil seed crops, sugarcane, and fibre crops. Cultivation practices of horticultural crops: vegetable crops, fruit crops, flower crops.Basic principles of natural farming, organic farming and sustainable agriculture	11					
	sustainable agriculture						

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from	Each question carries 9 marks.	
eachmodule.	Two questions will be given from each	
• Total of 8 Questions,	module, outof which 1 question should be	
eachcarrying 3 marks	answered.	60
	• Each question can have a maximum of 3	
(8x3 = 24marks)	subdivisions.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the general crop production techniques of field crops and horticultural crops.	K2
CO2	Explain the factors affecting crop growth and explain environmental management for crop production.	K2
CO3	Identify different crops and understand the growing seasons of major crops of Kerala	К3
CO4	Describe crop water management, nutrition management and crop protection	K4
CO5	Explain cultivation practices of various field crops and horticultural crops commonly grown in Kerala	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1							1					3
CO2		1			2		2					1
CO3	1	2	2		1		3					
CO4	2	1				2	2					
CO5		2					1		1			2

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Textbook of Field Crops Production Vol 1: Foodgrain Crops (PB)	Dr. Rajendra Prasad	Indian Council of Agricultural Research, New Delhi	First Edition, 2006		
2	Textbook of Field Crops Production: Commercial Crops Vol. II	Dr. Rajendra Prasad	Indian Council of Agricultural Research,New Delhi	First Edition, 2006		
3	Principles of Agronomy	T. Yellamanda Reddy and G.H.Sankara Reddy	New Delhi	First Edition, 2005		
4	Fundamentals of Agronomy	Amal Saxena and Lal Singh	Write And Print Publications, New Delhi	First Edition, 2008		
5	Text Book of Soil Science.	Biswas, T.D. andMukherjee, S.K.	Tata McGraw Hill Publishing Co., NewDelhi			
6	Introductory Soil Science.	Das.D.K	Kalyani Publishers, New Delhi			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Handbook of Agriculture.		ICAR Publications, New Delhi	6th Revised Edition, 2011.			
2	Vegetable Crops of India.	Das P.C.	Kalayani Publishers, New Delhi	1993			
3	Fundamentals of Agronomy.	De, G.C.	Oxford & IBH Publishing Co Pvt Ltd, New Delhi	1989			
4	Introduction to Horticulture	Kumar N.	Rajalakshmi Publications, Nagarcoil	7 th Edition, 2015			
5	Nature and Properties of Soils.	Brady, N.C	Pearson				

MATERIALS AND MANUFACTURING ENGINEERING

(INDUSTRIAL ENGINEERING)

Course Code	PCIET205	CIE Marks	40
Teaching Hours/Week	3:1:0:0	ESE Marks	60
(L: T:P: R)			
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Equip students with a comprehensive understanding of engineering materials, including crystal structures, phase diagrams, phase transformations, and heat treatment processes.
- **2.** Provide fundamental knowledge of manufacturing processes and familiarize students with modern production methods and technologies.

Module No.	Syllabus Description					
1	Materials and Types of Materials: Metals, polymers, ceramics, composites, advanced materials, biomaterials, nanomaterials, smart materials, energy materials, sustainable and green materials. Crystal Structure: Crystal lattices and the unit cell. Simple cubic, BCC, FCC, HCP crystal structures. Atomic packing factor. Crystallographic points, directions, and planes, Miller's indices. Crystal Imperfections: Point defects, line defects (dislocations), surface defects, volume defects. Microscopic Techniques: Polishing and etching techniques. Electron Microscopy, Transmission Electron Microscopy and Scanning Electron Microscopy. Grain size determination (ASTM). Elastic and Plastic Deformation: stress-strain diagram, true stress and true strain, flow stress. Schmidt's law. Slip and twinning.	11				

	Phase Diagram: Basic concepts: Solubility limit, solvent, solute, solid	
	solutions, Hume Rothery's rule, phase and phase equilibrium, Gibb's phase	
	rule. Alloys, need for alloying. Types of Phase diagrams, Invariant reactions,	
	Iron-iron carbide equilibrium diagram, TTT diagram, CCT diagram,	
2	Formation of pearlite, bainite, and martensite.	
2	Heat Treatment: Basic principles of annealing, normalizing, hardening,	
	spherodizing, and tempering. Surface hardening techniques: Carburizing,	10
	nitriding, flame hardening, induction hardening, laser hardening	
	Basics of fatigue and Creep: Fatigue, S-N curve, factors affecting fatigue	
	life. Creep, factors affecting creep.	
	Rolling: Principles of rolling, types of rolling mills, Various rolling	
	processes and applications: hot rolling, cold rolling, ring rolling, thread	
	rolling, tube rolling, shape rolling, skew rolling, defects in rolling.	
	Forging: Classification of forging, various forging operations: cogging,	
	coining, heading, piercing, hubbing, swaging, forging defects.	
	Extrusion: Process, types of extrusion: hot extrusion, cold extrusion, direct	
3	(forward) extrusion, indirect (backward) extrusion, hydrostatic extrusion,	
	impact extrusion, applications and defects.	11
	Drawing: Process, applications and defects. Wire drawing process.	
	brawing. Process, approactions and defects. Whe drawing process.	
	Sheet-Metal Forming: Bending sheet, plate and tubes. springback, press	
	brake forming, stretch forming, deep drawing, hydroforming, spinning, tube	
	spinning.	
	Casting: cores, shell mold casting, plaster mold casting, ceramic mold	
	casting, investment casting, permanent mold casting, pressure casting, die casting, centrifugal casting, casting defects.	
	casting, centificating, casting defects.	
4	Welding: weldability, solidification of weld metal, heat affected zone, gas	40
	welding, arc welding (including GTAW, MIG, TIG, plasma arc welding,	12
	submerged arc welding), ultrasonic welding, friction welding, resistance welding (spot and seam), thermit welding, welding defects.	
	weiding (spot and seam), thermit weiding, weiding defects.	
	Adhesive joints: Basic principles and applications.	
	Additive Manufacturing (3D Printing): Basic principles, processes,	
	materials used, applications, future trends. Sustainability in Manufacturing: Sustainable practices, recycling of	
	materials, environmental impacts.	
	Smart Manufacturing and Industry 4.0: Introduction to IoT,	
	automation, and data analytics in manufacturing.	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, outof	
• Total of 8 Questions, each	which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the types of engineering materials, their crystal structures, imperfections, and the principles of elastic and plastic deformation.	К2
CO2	Interpret phase diagrams, understand phase transformations, and analyse the principles and techniques of heat treatment, fatigue, and creep. Apply principles of various metal forming and shaping processes,	К3
CO3	including rolling, forging, extrusion, drawing, and sheet-metal forming, and identify associated defects.	К3
CO4	Understand and evaluate casting processes, welding techniques, adhesive joints, additive manufacturing, sustainability in manufacturing, and the implications of Industry 4.0 in smart manufacturing.	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	2	-	2	-	-	-	-	2
CO2	3	3	2	2	2	-	2	-	-	-	-	2
CO3	3	3	3	2	2	-	2	-	-	-	2	2
CO4	3	3	3	2	3	2	2	-	-	_	2	2

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Materials Science and Engineering: An Introduction	William D. Callister Jr. and David G. Rethwisch	Willey	10th Edition, 2018					
2	Materials Science and Engineering: A First Course	V. Raghavan	Prentice Hall India	6th Edition, 2015					
3	Manufacturing Engineering and Technology	Serope Kalpakjian, Steven Schmid	Pearson	8th Edition, 2020					
4	Introduction to Manufacturing Processes	Mikell P. Groover	Wiley	12th Edition, 2020					

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Principles of Materials Science and Engineering	William F. Smith	McGraw-Hill	4th Edition, 2005						
2	The Science and Engineering of Materials	Donald R. Askeland, Wendelin J. Wright	Cengage Learning	7th Edition, 2015						
3	Principles of Modern Manufacturing	Mikell P. Groover	Wiley	6th Edition, 2023						
4	Manufacturing Engineering Handbook	Hwaiyu Geng	McGraw-Hill Education	2nd Edition, 2015						
5	Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing	Ian Gibson, David Rosen, Brent Stucker	Springer	3rd Edition, 2020						
6	Sustainable Manufacturing	Kapil Gupta, Konstantinos Salonitis	Elsevier	2nd Edition, 2021						

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://nptel.ac.in/courses/113/104/113104068/						
	https://nptel.ac.in/courses/113/106/113106034/						
	https://nptel.ac.in/courses/113/104/113104005/						
	https://archive.nptel.ac.in/courses/112/106/112106293/						
	https://onlinecourses.nptel.ac.in/noc22_mm25/preview						
2	https://nptel.ac.in/courses/113/106/113106032/						
	https://nptel.ac.in/courses/113/104/113104006/						
	https://onlinecourses.nptel.ac.in/noc24_me74/preview						
3	https://nptel.ac.in/courses/112/105/112105126/						
	https://nptel.ac.in/courses/112/107/112107080/						
	https://onlinecourses-archive.nptel.ac.in/noc18_me49/preview						
4	https://onlinecourses.nptel.ac.in/noc23_me90/preview						
	https://onlinecourses.nptel.ac.in/noc21_me23/preview						
	https://elearn.nptel.ac.in/shop/iit-workshops/completed/additive-manufacturing-technologies-for-practicing-engineers/?v=c86ee0d9d7ed						
	https://onlinecourses.nptel.ac.in/noc22_me130/preview						
	https://onlinecourses.nptel.ac.in/noc21_ce47/preview						
	https://onlinecourses.nptel.ac.in/noc20_cs69/preview						

BASIC SHIP THEORY

(NAVAL AND SHIPPING ENGINEERING)

Course Code	PCNST205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-1-0-0	ESE Marks	60
Credits	4	ExamHours	2 Hrs 30 Mins
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Explain various types of ships and fundamentals of Naval Architecture that would equip one to define hull forms geometrically, and develop them as lines plan drawings.
- **2.** Apply the procedures of numerical integration to calculate hydrostatic properties, and plot sectional area curves, Bonjean curves, and hydrostatic curves.
- 3. Understand basic stability features of a ship using fundamental principles and hydrostatic curves
- **4.** Explain the various types of shipbuilding materials and identify various major and minor structural components of a ship and identify the main and auxiliary machinery systems onboard.

Module No.	Syllabus Description	Contact Hours
1	Types of ships, terms and definitions, Archimedes principle, laws of floatation, weight and buoyancy. The ship's form, main dimensions, lines plan, coefficients and their meaning, Fairing process and table of offsets, Lines plan development and drawing	11
2	Integration rules: - Trapezoidal rule, Simpson's rules, Tchebycheff's rule, areas, volumes and moments, Bonjean calculations and curves, sectional area curves. Hydrostatic calculations and curves.	11

3	conditions, Stability terms, Equal volume Inclinations shift of C.O.B. due to inclinations, C.O.B curve, metacentre, pro-metacentre and metacentric radius, metacentric height, metacentric curve, surface of flotation, curve of flotation, righting moment and righting lever	11
4	Frames, framing systems, primary and secondary members, shipbuilding materials, Bottom structure, shell structure, decks, bulkheads, superstructures, bulkheads, fore and aft structures. Main and auxiliary machinery, types of propulsion machinery, types of auxiliary machinery	11

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Identify various types of ships and understand fundamentals of Naval Architecture that would equip the student to define hull forms geometrically, and develop them as lines plan drawings.	К3	
CO2	Understand and apply the procedures of numerical integration to calculate hydrostatic properties, and plot sectional area curves, Bonjean curves, and hydrostatic curves.	К2	
CO3	Understand and explain basic stability features of a ship using fundamental principles and hydrostatic curves.	K2	
CO4	Identify and explain the various types of shipbuilding materials and various major and minor structural components of a ship and identify the main and auxiliary machinery systems onboard.	К3	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										
CO2	2	2			1							
CO3	2	2			1							
CO4	2	2										

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to Naval Architecture	Tupper, E.C.	Butterworth- Heinemann	Edition 5, 2013			
2	Ship Stability for Masters & Mates	C.B. Barrass & D.R.Derrett	Elsevier	Edition 7, 2019			
3	Ship Construction	Eyres D J	Elsevier	Edition 7, 2012			
4	Introduction to Marine Engineering	Taylor D A	Elsevier	Edition 2, 1996			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	The Maritime Engineering Reference Book	Molland A F (Ed)	Elsevier	Edition1, 2008			
2	Encyclopedia of Ship Technology	Jan Babicz	Wärtsilä Corporation	Edition 2, 2015			
3	Ship Knowledge – A Modern Encyclopedia	Klaas van Dokkum	DOKMAR	2003			
4	Lecture Notes in Basic Naval Architecture	Spyros Hirdaris	Aalto University Publication Series, Science & Technology 6/2021	Edition 1, 2021			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/114105003					
2	https://nptel.ac.in/courses/114105003					
3	https://nptel.ac.in/courses/114105003					
4	https://nptel.ac.in/courses/114105031					

POLYMERS & POLYMERISATION PRINCIPLES

(POLYMER ENGINEERING)

Course Code	РСРОТ205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To understand the basic terminologies associated with polymer materials
- 2. To analyse various techniques and methods for polymer conversion.

Module No.	Syllabus Description			
1	Monomers and Polymers: Definitions of monomer, repeat unit, oligomer, polymer, degree of polymerization, representation of polymer, functionality, bi-functional systems, poly-functional systems, advantages and disadvantages of polymers, classification of polymers. structure of monomer, repeat unit and polymer of the following- polyethylene, polypropylene, polystyrene, PVC, polyacrylonitrile, polycarbonate, PMMA, PF resin, MF resin, Nylon 6, Nylon 66 and PET, epoxy polymer, Kevlar, natural rubber, silicone rubber.	11		
2	Molecular weight: High molecular weight of polymers, concept of averaging, different averages in polymer molecular weight, number average, weight average, viscosity average, z-average, MWD, polydispersity index, principles of osmotic pressure method and viscometry, Experimental methods to determine weight average and z-average molecular weight.	11		

3	Types of Polymerisation: Linear step polymerisation, Carothers equation, non linear step polymerization, Addition polymerization- Free radical polymerisarion, Cationic polymerization, anionic polymerization, Coordination polymerization, Co polymerisation, different types of copolymers, alternating, random, block and graft copolymer, copolymerization drift, derivation of copolymer equation.	11
4	Polymerisation techniques: Bulk polymerisation, Solution polymerisation, Suspension polymerization, Emulsion polymerisation, Interfacial polymerisation.	11

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the structural requirements of polymerisation	K2
CO2	Illustrate structural formula of simple plastic and rubber materials	K2
CO3	Explain the basic concepts of average molecular weights	K2
CO4	Explain the basic principles of addition polymerization, stereo- regularity, ionic polymerisation and co polymerisation.	K2
CO5	Compare and correlate various polymerisation techniques.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1									
CO2	3	3	2									
CO3	3	3	3									
CO4	3	3	1									
CO5	3	3	1									

	Text Books									
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	The Elements of Polymer Science and Engineering	A. Rudin, P. Choi,	Academic Press	Third edition,2013						
2	Textbook of Polymer Science	F W Billmeyer	John Wiley & Sons	Third Edition, 2007						
3	Introduction to Physical Polymer Science,	L H. Sperling	Wiley & Sons	2015						
4	Polymer Science	V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar	New Age International	2015						

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Fundamentals of Polymer Science for Engineers	S. Fakirov	John Wiley & Sons	2017						
2	Polymer Chemistry	Charles E. Carraher Jr	CRC Press	2013						
3	Introduction to Polymers	Robert J. Young	CRC Press	2011						
4	Principles of Polymer Systems,	F. Rodrigues,	CRC Press	2014						

	Video Links (NPTEL, SWAYAM)							
Modul eNo.	Link ID							
1	https://archive.nptel.ac.in/content/mp4/105/106/105106205/MP4/mod01lec03.mp4							
2	https://archive.nptel.ac.in/content/mp4/105/106/105106205/MP4/mod01lec05.mp4							
3	https://archive.nptel.ac.in/content/mp4/105/106/105106205/MP4/mod09lec66.mp4							
4	https://archive.nptel.ac.in/content/mp4/105/106/105106205/MP4/mod01lec06.mp4							

PRINCIPLES OF SAFETY MANAGEMENT

(SAFETY & FIRE ENGINEERING)

Course Code	PCSFT205	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3-1-0-0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. To learn the various principles of safety management and enable the students to give safety training, perform safety audit, and accident investigation.

Module No.	Syllabus Description					
1	Introduction-Safety -Goals of safety engineering. Need for safety. Safety and productivity. Definitions: Accident, Injury, Hazard, Risk, Unsafe act, Unsafe Condition, Near miss, Dangerous Occurrence, Reportable accidents, Loss Prevention. History of Safety Engineering. Industrialization and Accidents, Evolution of modern safety concepts. Theories of accident causationTen Axioms of Industrial Safety, Heinrich's theory, Frank Bird's Domino theory, Hepburn's theory, V.L Grose's Multiple Causation Theory, System Model theory, Ferrell's Human Factors theory. Safety organization objectives, types, functions, Role of management, supervisors, workmen, unions, government and voluntary agencies in safety. Safety policy - Safety department and size - Safety Officer- responsibilities, authority. Safety committee- Need, Types, Advantages.	11				

2	Accident prevention Methods- Engineering, Education and Enforcement - Safety Education & Training -Importance, Various training methods,	11
	Effectiveness of training, Behaviour oriented training. Need and Reasons for	
	Accident Prevention - 5E of Accident Prevention. Effective Communication-	
	purpose, barrier to effective communication. Safety problems - employer's	
	problem, employee's problem. Housekeeping: Responsibility of management	
	and employees. Advantages of good housekeeping. 5S of housekeeping.	
	Work permit system- objectives, hot work, cold work and other work	
	permits. Safety psychology, Present Psychological Safety Problems General	
	psychological factors- attitudes, aptitudes, frustration, conflict, morale,	
	fatigue, boredom and monotony. Differences in factors affecting safety	
	performance Motivation for safety- Need of motivation, Theories of	
	motivation- Maslow's hierarchy of needs, Herzberg hygiene Theory, Mc	
	Gregor X &Y Theory. Methods of Motivation.	
	Personal protection in the work environment, Types of PPEs, Personal	
	protective equipment respiratory and non-respiratory equipment. Standards	
	related to PPEs. Monitoring Safety Performance: Frequency rate, severity	
3	rate, incidence rate, activity rate, safety "t" score, and safety activity rate -	11
	problems. Cost of accidents. Computation of Costs- Utility of Cost data.	
	Plant safety inspection, types, and inspection Procedure, safetysampling	
	techniques, Typical industrial models and methodology. Entry into confined	
	spaces.	
	Code of Practice on Safety Audit-IS 14489-Goals, Objectives and	
	Responsibilities, Audit Methodology, Executing the Audit, Job safety	
	analysis (JSA), Safety surveys, Non conformity reporting (NCR). Safety	
	Inventory Technique. The practice of safety management-the significance of	
	risk acceptability. Risk Management-Introduction to ISO 31000 - Accident	
4	investigation -Why? When? Where? Who? & How? Basics- Man-	11
	Environment & Systems Process of Investigation-Tools-Data Collection-	
	Handling witnesses- Case study. Accident analysis. Analytical	
	Techniques-System Safety-Change Analysis- MORT-Multi Events	
	Sequencing-TOR	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Explain the concepts of safety, the theories of accident causation and duties of safety officer	K2			
CO2	Explain functions safety organisation, accident prevention methods, concept of safety psychology and motivational theories	K2			
CO3	Explain about personnel protective equipments and safety equipments, produce different types of work permits, and estimate safety performance using various indices	K2			
CO4	Produce different types of accident investigation reports, and compliance check lists, Analyse job safety and accidents through JHA tools and accident models, estimate costs.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3											
CO3	3				1							
CO4	3	1			1							

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Fundamentals of industrial safety and health	Dr. K.U.Misthri	Siddharth Prakashan Ahmadabad	2012 Edition Vol.I&II						
2	Safety Management in Industry	N.V. Krishnan	Jaico Publishing House, New Delhi	1997						

		Reference Books			
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year	
1	Industrial Accident Prevention	Heinrich H.W.	McGraw-Hill Company, New York,	1980.	
2	Industrial Safety	Ronald P. Blake	Prentice Hall, New Delhi,	1973	
3	Occupational Safety and health,	David L. Goetsch,	Prentice Hall	10 th edn 2023	
4	Modern Accident Investigation and Analysis,	Ted S. Ferry	John Wiley & Sons	1988	
5	Occupational Safety Management and Engineering,	Willie Hammer	Prentice Hall		
6	Safety Management System,	Alan Waring	Chapman & Hall		
7	Safety Management,	John V. Grimaldi and Rollin H.Simonds,	All India Traveller Book Seller, Delhi.		
8	Accident Prevention Manual for Industrial Operations		National Safety Council, Chicago		
9	Loss Prevention in process industries	Lees F.P	Butterworth publications, London,	2nd edition,1990.	

SEMESTER 3

CIVIL ENGINEERING

MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE – 3

(Common to Group B & C)

Course Code	GYMAT301	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic knowledge in complex numbers.	Course Type	Theory

Course Objectives:

- 1. To introduce the concept and applications of Fourier transforms in various engineering fields.
- 2. To introduce the basic theory of functions of a complex variable, including residue integration and conformal transformation, and their applications

Module No.	Syllabus Description	Contact Hours
1	Fourier Integral, From Fourier series to Fourier Integral, Fourier Cosine and Sine integrals, Fourier Cosine and Sine Transform, Linearity, Transforms of Derivatives, Fourier Transform and its inverse, Linearity, Transforms of Derivative. (Text 1: Relevant topics from sections 11.7, 11.8, 11.9)	9
2	Complex Function, Limit, Continuity, Derivative, Analytic functions, Cauchy-Riemann Equations (without proof), Laplace's Equations, Harmonic functions, Finding harmonic conjugate, Conformal mapping, Mappings of $w=z^2$, $w=e^z$, $w=\frac{1}{z}$, $w=sinz$. (Text 1: Relevant topics from sections 13.3, 13.4, 17.1, 17.2, 17.4)	9
3	Complex Integration: Line integrals in the complex plane (Definition & Basic properties), First evaluation method, Second evaluation method, Cauchy's integral theorem (without proof) on simply connected domain,	9

	Independence of path, Cauchy integral theorem on multiply connected	
	domain (without proof), Cauchy Integral formula (without proof). (Text 1: Relevant topics from sections 14.1, 14.2, 14.3)	
4	Taylor series and Maclaurin series, Laurent series (without proof), Singularities and Zeros – Isolated Singularity, Poles, Essential Singularities, Removable singularities, Zeros of Analytic functions – Poles and Zeros, Formulas for Residues, Residue theorem (without proof), Residue Integration- Integral of Rational Functions of $cos\theta$ and $sin\theta$. (Text 1: Relevant topics from sections 15.4, 16.1, 16.2, 16.3, 16.4)	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Determine the Fourier transforms of functions and apply them to solve problems arising in engineering.	К3
CO2	Understand the analyticity of complex functions and apply it in conformal mapping.	К3
CO3	Compute complex integrals using Cauchy's integral theorem and Cauchy's integral formula.	КЗ
CO4	Understand the series expansion of complex function about a singularity and apply residue theorem to compute real integrals.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition, 2016		

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Complex Analysis	Dennis G. Zill, Patrick D. Shanahan	Jones & Bartlett	3 rd edition, 2015
2	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023
3	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	44 th edition, 2018
4	Fast Fourier Transform - Algorithms and Applications	K.R. Rao, Do Nyeon Kim, Jae Jeong Hwang	Springer	1 st edition, 2011

FLUID MECHANICS

Course Code	PCCET302	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-1-0-0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GCEST103/ Equivalent	Course Type	Theory

Course Objectives:

1. To familiarize the fundamental concepts of fluid mechanics and hydraulics in pipes and open channels, pressure measurement and flow measurement systems

Module No.	Syllabus Description	Contact Hours
1	Fluid properties, Newton's law of viscosity, types of fluids (description only) Fluid Statics: Fluid pressure, Pascal's Law, Hydrostatic law, Measurement of fluid pressure using manometers -Simple manometer (Piezo meter and U tube manometers) and Differential manometers (U tube differential manometer and inverted U tube differential manometer) (include numerical problems), Mechanical gauges (brief description only).	11
2	Determination of total pressure and centre of pressure on surfaces (include numerical problems): Vertical plane surface, Horizontal plane surface, inclined plane surface, curved surfaces, Buoyancy and Floatation: Basic concepts, centre of buoyancy, meta-centre and meta-centric height of floating bodies, determination of meta -centric height using analytical and experimental method (include derivation and numerical problems), conditions for stability of floating and submerged bodies	11
3	Fluid Kinematics : Methods of describing fluid motion, Lagrangian and Eulerian methods.	11

	types of fluid flow, continuity equation in one, two and three dimensions				
	(include derivation and numerical problems)-4				
	Determination of velocity and acceleration at a point in fluid flow (include				
	numerical problems), Description of streamline, pathline and streakline,				
	velocity potential, stream function and flow net				
	Fluid dynamics: Forces in fluid motion, Derivation of Bernoulli's equation				
	from Eulers's equation of motion with assumptions, Practical Applications of				
	Bernoulli's equation- Venturimeter, orifice meter and Pitot tube (include				
	numerical problems), Momentum equations and forces on Pipe bends				
	Flow through Orifices: hydraulic coefficients and experimental determination				
	of hydraulic coefficients				
	(associated numerical problems) Discharge through large orifices- rectangular				
	orifice (discharging freely, fully submerged and partially submerged), time of				
	emptying of a rectangular tank through an orifice at its bottom (include				
	numerical problems).				
	Pipe flow- Computation of major losses in pipes (derivation of Darcy				
	Weisbach equation) - Computation of minor losses in pipes (equations only),				
4	hydraulic gradient line and total energy line, pipes in series and parallel -	11			
	equivalent pipes (include numerical problems from all sections)				
	Flow in Open channel: Comparison between pipe flow and open channel flow,				
	classification of flow in open channels				
	Flow through Notches and weirs: classification of notches and weirs,				
	discharge over a rectangular notch/weir, discharge over a triangular notch/weir,				
	discharge over a trapezoidal notch/weir, velocity of approach and end				
	contraction (include numerical problems).				

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attend	ance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	5 15		10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B		
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60	

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	To understand the basic properties of fluids	K2
CO2	To apply the fundamental principles of fluid statics and dynamics in the solution of practical problems in Hydraulics Engineering	К3
CO3	To evaluate the stability of floating and submerged bodies	К3
CO4	To estimate the forces in pipe bends	К3
CO5	To explain the fluid flow properties in pipes and open channels	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										
CO2	3	3										
CO3	3	3										
CO4	3	3										
CO5	3	3										

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Hydraulics and Fluid Mechanics	Modi P. N. and S. M.	S.B.H Publishers, New	22 nd edition					
1	including Hydraulic machines,	Seth,	Delhi,	2019					
2	Flow in Open channels	Subramanya K	Tata McGraw-Hill	5 th edition 2019					
3	Open - Channel Flow	Hanif Chaudhary M	Springer	2 nd edition 2007					
4	Fluid Mechanics and Hydraulic Machines	R K Bansal	Laxmi Publications	10 th edition 2020					
		John F Douglas, Janusz .		Cth - 1141					
5	Fluid Mechanics	Gasiorek, John A.	Pearson Publications	6 th edition 2011					
		Swaffield, Lynne B. Jack							

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Fluid Mechanics	Victor Streeter , E. Benjamin Wylie , K.W. Bedford	Mc Graw Hill Publishers.	9th edition 2017					
2	Munson, Young and Okiishi's Fundamentals of Fluid Mechanics	Philip M. Gerhart John I. Hochstein, Andrew L. Gerhart	John Wiley & Sons Inc	9 th edition 2020					
3	Fundamentals Of Fluid Mechanics	Bruce R. Munson, Donald F. Young, Theodore H. Okiishi	John Wiley & Sons Inc	5th edition 2005					
4	Introductory Fluid Mechanics	Joseph Katz	Cambridge University Press	2015					
5	Fluid Mechanics, Hydraulics and Hydraulic Machines	Arora.K.R,	Standard Publishers	2005					
6	A First Course in Fluid Mechanics	Narasimhan S.	University Press (India)	2006					
7	Fluid Mechanics	Frank.M.White	Mc Graw Hill Publishers.	9 th edition 2022					
8	Fluid Mechanics	Mohanty.A.K.	Prentice Hall, New Delhi	2011					
9	Principles of Fluid Mechanics and Fluid Machines	Narayana Pillai,N	University Press	2011					
10	Fluid Mechanics and Fluid power Engineering	Kumar.D.N.	S.K.Kataria & sons	2013					
11	Theory and Applications of Fluid Mechanics	Subramanya K	Tata McGraw-Hill	1993					

	Video Links (NPTEL, SWAYAM)						
Sl No.	Link ID						
	https://onlinecourses.nptel.ac.in/noc22_me31/preview						
1	https://www.youtube.com/playlist?list=PLPALMYFm0ysmjNIuw7eJ2ZGz_XSFkv6CI						
	https://drive.google.com/drive/folders/1DcQjcxeUCHyOqJh5x4lSjwhUbbQn2UI?usp=sharing						
2	https://nptel.ac.in/courses/105103095						
3	https://nptel.ac.in/courses/105103095						
4	https://nptel.ac.in/courses/105107059						

STRUCTURAL ANALYSIS - I

Course Code	PCCET303	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCEL205/Equivalent	Course Type	Theory

Course Objectives:

- 1. To provide students with a thorough understanding of the fundamental theory of structural analysis
- 2. To develop the student's ability to both model and analyse statically determinate and indeterminate structures and to provide realistic applications encountered in professional practice

SYLLABUS

Module No.	Syllabus Description					
	Statically determinate trusses: Analysis using method of joints and method of sections.					
	Cables and Suspension bridges: Forces in loaded (concentrated and uniformly distributed) cables - length of cables - supports at same and different levels - maximum tension in the suspension cable and backstays, pressure on towers.					
1	Simple suspension bridges with three hinged stiffening girders - bending moments and shear force diagrams. Deformation Response of Statically Determinate Beams:					
	Moment area method–Mohr's theorems, Applications to determinate deformations of cantilever and simply supported beams (prismatic and beams of varying cross section) subjected to concentrated and uniformly distributed loads.					
2	Deformation Response of Statically Determinate Beams: Conjugate beam method— Real beam and conjugate beam, boundary conditions; Applications to determinate deformations of cantilever and	11				

simply supported beams (prismatic and beams of varying cross section	
subjected to concentrated and uniformly distributed loads.	
Energy Principles and Energy Theorems:	
Castigliano's theorem I, Principle of virtual work, Betti's theorem,	
Maxwell's law of reciprocal deflections.	
Unit load method for determination of deflection of statically determinate	
beams, frames and trusses.	
Indeterminate Structures:	
Introduction to force method of analysis. Static indeterminacy	
Analysis of statically indeterminate structures	
Castigliano's theorem II, Minimum strain energy method for analysing	
statically indeterminate structures (Illustration only)	10
Method of consistent deformations: Analysis of beams, frames and	10
trusses. (simple problems with one redundant, illustration only for two-	
redundant problems).	
Concepts of effect of pre-strain, lack of fit, temperature changes and	
support settlement. (Illustration only).	
Three Hinged Arches: Action of an arch - Eddy's theorem - Three	
hinged, parabolic and circular arches (with supports at same level) -	
determination of horizontal thrust, bending moment, normal thrust and	
radial shear.	
Moving Loads and influence lines	
Introduction to moving loads - concept of influence lines - influence lines	11
for reaction, shear force and bending moment in simply supported beams	
and over hanging beams - analysis for different types of moving loads	
(single concentrated load - several concentrated loads - uniformly	
distributed load shorter and longer than the span) conditions for maximum	
bending moment and shear force.	
	subjected to concentrated and uniformly distributed loads. Energy Principles and Energy Theorems: Castigliano's theorem I, Principle of virtual work, Betti's theorem, Maxwell's law of reciprocal deflections. Unit load method for determination of deflection of statically determinate beams, frames and trusses. Indeterminate Structures: Introduction to force method of analysis. Static indeterminacy Analysis of statically indeterminate structures Castigliano's theorem II, Minimum strain energy method for analysing statically indeterminate structures (Illustration only) Method of consistent deformations: Analysis of beams, frames and trusses. (simple problems with one redundant, illustration only for two-redundant problems). Concepts of effect of pre-strain, lack of fit, temperature changes and support settlement. (Illustration only). Three Hinged Arches: Action of an arch - Eddy's theorem - Three hinged, parabolic and circular arches (with supports at same level) - determination of horizontal thrust, bending moment, normal thrust and radial shear. Moving Loads and influence lines Introduction to moving loads - concept of influence lines - influence lines for reaction, shear force and bending moment in simply supported beams and over hanging beams - analysis for different types of moving loads (single concentrated load - several concentrated loads - uniformly distributed load shorter and longer than the span) conditions for maximum

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5 15		10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks)	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply appropriate structural mechanics principles for estimation of force and deformation response of structural elements.	К3
CO2	Apply energy-based techniques for estimation of deformation response of structural elements and simple structural systems.	К3
CO3	Analyse statically indeterminate structures using force method.	К3
CO4	Analyse the effects of moving loads on structures using influence lines	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3										2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Mechanics of Structures Vol I & II	S.B. Junnarkar & H.J. Shah	Charotar Publishing House,	2015				
2	Structural Analysis	Devdas Menon	Narosa Publishers, NewDelhi	3rd edition 2023				
3	Structural Analysis	R.C. Hibbler	Pearson Education	10 th edn. 2022				
4	Basic Structural Analysis,	C.S. Reddy	New Delhi: Tata McGrawHill, NewDelhi	3 rd Edn. ,2017				

	Reference Books							
Sl. No	Name of the Publisher	Edition and Year						
1	Intermediate Structural Analysis,	C.K. Wang	Tata McGraw Hill Publishers	2017				
2	Elementary Structural Analysis	J.B. Wilbur, C.H. Norris, and S. Utku	McGraw Hill, NewYork	2006				
3	L.S. Negi and R.S. Jangid	Structural Analysis	Tata McGraw Hill	2006				

	Video Links (NPTEL, SWAYAM)					
Sl.No.	Link ID					
1	https://nptel.ac.in/courses/105105166					
2	https://nptel.ac.in/courses/105105109					

SURVEYING & GEOMATICS

Course Code	PBCET304	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GCEST104	Course Type	Theory

Course Objectives:

- 1. To impart awareness on the principles of surveying, various methods, errors associated with the field observations and advanced surveying techniques.
- 2. To impart practical knowledge on various surveying methods and enable students to utilize advanced surveying techniques in field surveying

SYLLABUS

Module No.	Syllabus Description						
1	Introduction to Surveying: Principles, Linear, angular and graphical methods, Survey stations, Survey lines- ranging, Bearing of survey lines, Local attraction, Declination, Methods of orientation (by compass and by back sighting). Levelling: Principles of levelling- Dumpy level, booking and reducing levels, Methods- simple, differential, reciprocal levelling, profile levelling and cross sectioning. Digital and Auto Level, Errors in levelling	9					
2	Contouring: Characteristics, methods, uses. Areas and Volumes: computation of area by offsets to base line, by dividing area into number of triangles; volume of level section by prismoidal and trapezoidal formulae. Mass diagram: Construction, Characteristics and uses Triangulation: Triangulation figures, Triangulation stations, Inter visibility of stations, Satellite Stations and reduction to centre.	9					

3	Theory of Errors: Types, theory of least squares, Weighting of observations, Most probable value, Computation of indirectly observed quantities - method of normal equations. Total Station: Concept of EDM, principles and working, advantages and applications, Global Positioning Systems-Components and principles, satellite ranging-calculating position, signal structure, application of GPS, GPS Surveying methods-Static, Rapid static, Kinematic methods – DGPS, Recent trends in Surveying: GNSS, Smart Station and LIDAR	9
4	Remote Sensing: Definition- Electromagnetic spectrum-Energy interactions with atmosphere and earth surface features-spectral reflectance of vegetation, soil and water- Classification of sensors-Active and Passive, Resolution-spatial, spectral radiometric and Temporal resolution, Multi spectral scanning-Along track and across track scanning Geographical Information System: Components of GIS, GIS operations, Map projections- methods, Coordinate systems-Geographic and Projected coordinate systems, Data Types- Spatial and attribute data, Raster and vector data representation	9

Suggestion on Project Topics(8 hrs)

- On the first class before starting the first module, direct the students to select a land region with defined boundary. The faculty in charge should ensure that the selected region is appropriate for learning the concepts and methods through the project.
- The students should locate the geographic coordinate systems for the selected region using applications like Bhuvan.
- Conduct the land surveying using linear measurements (tape or distorat).
- Determine the errors in traverse and apply corrections.
- Prepare the survey sketch.
- Determine the reduced levels and prepare the contour maps using conventional (level or theodolite) methods.
- Conduct the total station survey of the same region and prepare the contour maps.
- Compare the results of the two methods.

- Determine the earthwork quantity the faculty shall help the students by suggesting either a region to fill or cut to find the earthwork quantity estimation requirement.
- Application of advanced surveying techniques including LIDAR is advised but not mandatory.
- Prepare the survey report, print it and submit to the faculty.

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	2 questions will be given from each module, out	
module.	of which 1 question should be answered.	
• Total of 8 Questions,	Each question can have a maximum of 2 sub	40
each carrying 2 marks	divisions.	40
(8x2 =16 marks)	Each question carries 6 marks.	
	(4x6 = 24 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Understand and apply the principles and techniques of surveying	K2, K3				
CO2	Apply the principles of surveying for triangulation, area and volume computation, contour maps preparation and in the construction of mass diagram	К3				
CO3	Understand the concept of least squares, weight of observations and to identify the possible errors in the field observations	K2 k3				
CO4	Understand different surveying techniques using advanced surveying equipments.	К2				
CO5	Prepare a survey report incorporating various concepts of surveying.	K6				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1								
CO2	3	3	1	1								
CO3	3	3							3	3		
CO4	3	3			3				3	3		
CO5	3	3	3	3	3	3			3	3		3

	Text Books							
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year				
1	Surveying Vol 1	Dr. B C Punmia, Ashok Kumar Jain & Arun Kumar Jain	Laxmi Publications (P) Ltd.	Seventeenth Edition Jan 2016				
2	Surveying Vol II	Dr. B C Punmia, Ashok Kumar Jain & Arun Kumar Jain	Laxmi Publications (P) Ltd.	July 2018				
3	Introduction to Geographic Information Systems	Kang-Tsung Chang	Mc Graw Hill Education	Indian Edition, July 2017				
4	Fundamentals of Remote Sensing	George Joseph	Universities Press	2005				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Textbook of Surveying	C Venketaramaiah	Universities Press	2011			
2	Surveying Vol I	S K Duggal	Mc Graw Hill	Fifth Edition,2019			
3	Surveying Vol II	S K Duggal	Mc Graw Hill	Fifth Edition,2019			
4	A textbook of Surveying and Levelling	R Agor	Khanna Publishers	2005			
5	Textbook of Remote Sensing And Geographical Information Systems	Ms. Anji Reddy	B.S Publications	Fourth Edition,2012			
6	Remote Sensing and Image Interpretation,7 Ed(An Indian Adaptation)	Thomas M Lillesand, Ralph W. Kiefer	Wiley	Seventh Edition,2000			
7	Principles of Geographical Information Systems	Burrough P	Oxford University Press	1998			

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID				
1	https://nptel.ac.in/courses/105107122 Surveying Nptel IIT Roorkee , J K Ghosh				
2	https://nptel.ac.in/courses/105107122 Surveying Nptel IIT Roorkee , J K Ghosh				
3	https://archive.nptel.ac.in/courses/105/104/105104100/ Nptel Modern Surveying Techniques,IIT Kanpur				
4	https://onlinecourses.nptel.ac.in/noc22_ce84/preview Nptel Swayam Remote Sensing and GIS , Prof. Rishikesh Bharti ,IIT Guwahati				

PBL Course Elements

L: Lecture	R: Project (1 Hr.), 2 Faculty Members					
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video			

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for	Allotted
		Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer	4
	Sessions	
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

INTRODUCTION TO ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Course Code	GNEST305	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Demonstrate a solid understanding of advanced linear algebra concepts, machine learning algorithms and statistical analysis techniques relevant to engineering applications, principles and algorithms.
- 2. Apply theoretical concepts to solve practical engineering problems, analyze data to extract meaningful insights, and implement appropriate mathematical and computational techniques for AI and data science applications.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Introduction to AI and Machine Learning: Basics of Machine Learning	
	- types of Machine Learning systems-challenges in ML- Supervised	
	learning model example- regression models- Classification model	
	example- Logistic regression-unsupervised model example- K-means	
1	clustering. Artificial Neural Network- Perceptron- Universal	11
	Approximation Theorem (statement only)- Multi-Layer Perceptron- Deep	11
	Neural Network- demonstration of regression and classification problems	
	using MLP.(Text-2)	
	Mathematical Foundations of AI and Data science: Role of linear	
2	algebra in Data representation and analysis - Matrix decomposition-	
	Singular Value Decomposition (SVD)- Spectral decomposition-	11

	Dimensionality reduction technique-Principal Component Analysis	
	(PCA). (Text-1)	
	Applied Probability and Statistics for AI and Data Science: Basics of	
	probability-random variables and statistical measures - rules in	
	probability- Bayes theorem and its applications- statistical estimation-	
3	Maximum Likelihood Estimator (MLE) - statistical summaries-	11
	Correlation analysis- linear correlation (direct problems only)- regression	
	analysis- linear regression (using least square method) (Text book 4)	
	Basics of Data Science: Benefits of data science-use of statistics and	
	Machine Learning in Data Science- data science process - applications of	
	Machine Learning in Data Science- modelling process- demonstration of	
4	ML applications in data science- Big Data and Data Science. (For	11
	visualization the software tools like Tableau, PowerBI, R or Python can	11
	be used. For Machine Learning implementation, Python, MATLAB or R	
	can be used.)(Text book-5)	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
GO1	Apply the concept of machine learning algorithms including neural networks and supervised/unsupervised learning techniques for	К3
CO1	engineering applications.	
	Apply advanced mathematical concepts such as matrix operations,	К3
CO2	singular values, and principal component analysis to analyze and solve	
	engineering problems.	
	Analyze and interpret data using statistical methods including	К3
CO3	descriptive statistics, correlation, and regression analysis to derive	
	meaningful insights and make informed decisions.	
G 0.4	Integrate statistical approaches and machine learning techniques to	К3
CO4	ensure practically feasible solutions in engineering contexts.	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								
CO2	3	3	3	3								
CO3	3	3	3	3								
CO4	3	3	3	3								
CO5	3	3	3	3								

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Introduction to Linear Algebra	Gilbert Strang	Wellesley-Cambridge Press	6 th edition, 2023				
2	Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow	Aurélien Géron	O'Reilly Media, Inc.	2 nd edition,202				
3	Mathematics for machine learning	Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong	Cambridge University Press	1 st edition. 2020				
4	Fundamentals of mathematical statistics	Gupta, S. C., and V. K. Kapoor	Sultan Chand & Sons	9 th edition, 2020				
5	Introducing data science: big data, machine learning, and more, using Python tools	Cielen, Davy, and Arno Meysman	Simon and Schuster	1 st edition, 2016				

	Reference Books					
1	Data science: concepts and practice	Kotu, Vijay, and Bala Deshpande	Morgan Kaufmann	2 nd edition, 2018		
2	Probability and Statistics for Data Science	Carlos Fernandez- Granda	Center for Data Science in NYU	1 st edition, 2017		
3	Foundations of Data Science	Avrim Blum, John Hopcroft, and Ravi Kannan	Cambridge University Press	1 st edition, 2020		
4	Statistics For Data Science	James D. Miller	Packt Publishing	1st edition, 2019		
5	Probability and Statistics - The Science of Uncertainty	Michael J. Evans and Jeffrey S. Rosenthal	University of Toronto	1 st edition, 2009		
6	An Introduction to the Science of Statistics: From Theory to Implementation	Joseph C. Watkins	chrome- extension://efaidnbmn nnibpcajpcglclefindm kaj/https://www.math. arizo	Preliminary Edition.		

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://archive.nptel.ac.in/courses/106/106/106106198/						
2	https://archive.nptel.ac.in/courses/106/106/106106198/ https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/resources/lecture-29-singular-value-decomposition/						
3	https://ocw.mit.edu/courses/18-650-statistics-for-applications-fall-2016/resources/lecture-19-video/						
4	https://archive.nptel.ac.in/courses/106/106/106106198/						

ECONOMICS FOR ENGINEERS

(Common to All Branches)

Course Code	UCHUT346	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understanding of finance and costing for engineering operation, budgetary planning and control
- 2. Provide fundamental concept of micro and macroeconomics related to engineering industry
- 3. Deliver the basic concepts of Value Engineering.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Basic Economics Concepts - Basic economic problems - Production Possibility Curve - Utility - Law of diminishing marginal utility - Law of Demand - Law of supply - Elasticity - measurement of elasticity and its applications - Equilibrium- Changes in demand and supply and its effects Production function - Law of variable proportion - Economies of Scale - Internal and External Economies - Cobb-Douglas Production Function	6
2	Cost concepts – Social cost, private cost – Explicit and implicit cost – Sunk cost - Opportunity cost - short run cost curves - Revenue concepts Firms and their objectives – Types of firms – Markets - Perfect Competition – Monopoly - Monopolistic Competition - Oligopoly (features and equilibrium of a firm)	6

3	Monetary System – Money – Functions - Central Banking –Inflation - Causes and Effects – Measures to Control Inflation - Monetary and Fiscal policies – Deflation Taxation – Direct and Indirect taxes (merits and demerits) - GST National income – Concepts - Circular Flow – Methods of Estimation and Difficulties - Stock Market – Functions- Problems faced by the Indian stock market-Demat Account and Trading Account – Stock market Indicators- SENSEX and NIFTY	6
4	Value Analysis and value Engineering - Cost Value, Exchange Value, Use Value, Esteem Value - Aims, Advantages and Application areas of Value Engineering - Value Engineering Procedure - Break-even Analysis - Cost-Benefit Analysis - Capital Budgeting - Process planning	6

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Case study/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
10	15	12.5	12.5	50

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 Minimum 1 and Maximum 2 Questions from each module. Total of 6 Questions, each carrying 3 marks (6x3 =18marks) 	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions. Each question carries 8 marks. (4x8 = 32 marks) 	50

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Understand the fundamentals of various economic issues using laws and learn the concepts of demand, supply, elasticity and production function.	K2			
	Develop decision making capability by applying concepts relating to	К3			
CO2	costs and revenue, and acquire knowledge regarding the functioning of firms in different market situations.				
CO3	Outline the macroeconomic principles of monetary and fiscal systems, national income and stock market.	K2			
CO4	Make use of the possibilities of value analysis and engineering, and solve simple business problems using break even analysis, cost benefit analysis and capital budgeting techniques.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	1	-	-	-	-	1	-
CO2	-	-	-	-	-	1	1	-	-	-	1	-
CO3	-	-	-	-	1	-	-	-	-	-	2	-
CO4	-	-	-	-	1	1	-	-	-	-	2	-

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Managerial Economics	Geetika, Piyali Ghosh and Chodhury	Tata McGraw Hill,	2015			
2	Engineering Economy	H. G. Thuesen, W. J. Fabrycky	РНІ	1966			
3	Engineering Economics	R. Paneerselvam	PHI	2012			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Engineering Economy	Leland Blank P.E, Anthony Tarquin P. E.	Mc Graw Hill	7 TH Edition			
2	Indian Financial System	Khan M. Y.	Tata McGraw Hill	2011			
3	Engineering Economics and analysis	Donald G. Newman, Jerome P. Lavelle	Engg. Press, Texas	2002			
4	Contemporary Engineering Economics	Chan S. Park	Prentice Hall of India Ltd	2001			

SEMESTER S3/S4

ENGINEERING ETHICS AND SUSTAINABLE DEVELOPMENT

Course Code	UCHUT347	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Equip with the knowledge and skills to make ethical decisions and implement gendersensitive practices in their professional lives.
- Develop a holistic and comprehensive interdisciplinary approach to understanding
 engineering ethics principles from a perspective of environment protection and sustainable
 development.
- 3. Develop the ability to find strategies for implementing sustainable engineering solutions.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Fundamentals of ethics - Personal vs. professional ethics, Civic Virtue, Respect for others, Profession and Professionalism, Ingenuity, diligence and responsibility, Integrity in design, development, and research domains, Plagiarism, a balanced outlook on law - challenges - case studies, Technology and digital revolution-Data, information, and knowledge, Cybertrust and cybersecurity, Data collection & management, High technologies: connecting people and places-accessibility and social impacts, Managing conflict, Collective bargaining, Confidentiality, Role of confidentiality in moral integrity, Codes of Ethics.	6
	Basic concepts in Gender Studies - sex, gender, sexuality, gender spectrum: beyond the binary, gender identity, gender expression, gender stereotypes, Gender disparity and discrimination in education, employment and everyday life, History of women in Science & Technology, Gendered	

	technologies & innovations, Ethical values and practices in connection with	
	gender - equity, diversity & gender justice, Gender policy and	
	women/transgender empowerment initiatives.	
	Introduction to Environmental Ethics: Definition, importance and	
	historical development of environmental ethics, key philosophical theories	
	(anthropocentrism, biocentrism, ecocentrism). Sustainable Engineering	
	Principles: Definition and scope, triple bottom line (economic, social and	
	environmental sustainability), life cycle analysis and sustainability metrics.	
2	Ecosystems and Biodiversity: Basics of ecosystems and their functions,	6
	Importance of biodiversity and its conservation, Human impact on ecosystems	
	and biodiversity loss, An overview of various ecosystems in Kerala/India, and	
	its significance. Landscape and Urban Ecology: Principles of landscape	
	ecology, Urbanization and its environmental impact, Sustainable urban	
	planning and green infrastructure.	
	Hydrology and Water Management: Basics of hydrology and water cycle,	
	Water scarcity and pollution issues, Sustainable water management practices,	
	Environmental flow, disruptions and disasters. Zero Waste Concepts and	
	Practices: Definition of zero waste and its principles, Strategies for waste	
	reduction, reuse, reduce and recycling, Case studies of successful zero waste	
	initiatives. Circular Economy and Degrowth: Introduction to the circular	
3	economy model, Differences between linear and circular economies, degrowth	6
	principles, Strategies for implementing circular economy practices and	
	degrowth principles in engineering. Mobility and Sustainable	
	Transportation: Impacts of transportation on the environment and climate,	
	Basic tenets of a Sustainable Transportation design, Sustainable urban	
	mobility solutions, Integrated mobility systems, E-Mobility, Existing and	
	upcoming models of sustainable mobility solutions.	
	Renewable Energy and Sustainable Technologies: Overview of renewable	
	energy sources (solar, wind, hydro, biomass), Sustainable technologies in	
	energy production and consumption, Challenges and opportunities in	
4	renewable energy adoption. Climate Change and Engineering Solutions:	6
-	Basics of climate change science, Impact of climate change on natural and	•
	human systems, Kerala/India and the Climate crisis, Engineering solutions to	
	mitigate, adapt and build resilience to climate change. Environmental	
	Policies and Regulations: Overview of key environmental policies and	

regulations (national and international), Role of engineers in policy implementation and compliance, Ethical considerations in environmental policy-making. **Case Studies and Future Directions:** Analysis of real-world case studies, Emerging trends and future directions in environmental ethics and sustainability, Discussion on the role of engineers in promoting a sustainable future.

Course Assessment Method (CIE: 50 marks, ESE: 50)

Continuous Internal Evaluation Marks (CIE):

Continuous internal evaluation will be based on individual and group activities undertaken throughout the course and the portfolio created documenting their work and learning. The portfolio will include reflections, project reports, case studies, and all other relevant materials.

- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. These groups can be the same ones they have formed in the previous semester.
- Activities are to be distributed between 2 class hours and 3 Self-study hours.
- The portfolio and reflective journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through various courses.

Sl. No.	Item	Particulars	Group/ Individ ual (G/I)	Mark s
1	Reflective Journal	Weekly entries reflecting on what was learned, personal insights, and how it can be applied to local contexts.	I	5
2	Micro project (Detailed documentation	1 a) Perform an Engineering Ethics Case Study analysis and prepare a report1 b) Conduct a literature survey on 'Code of Ethics for Engineers' and prepare a sample code of ethics	G	8
	of the project, including methodologies, findings, and reflections)	2. Listen to a TED talk on a Gender-related topic, do a literature survey on that topic and make a report citing the relevant papers with a specific analysis of the Kerala context	G	5
		3. Undertake a project study based on the concepts of sustainable development* - Module II, Module III & Module IV	G	12

3	Activities	2. One activity* each from Module II, Module III & Module IV	G	15
4	Final Presentation	A comprehensive presentation summarising the key takeaways from the course, personal reflections, and proposed future actions based on the learnings.	G	5
		Total Marks		50

^{*}Can be taken from the given sample activities/projects

Evaluation Criteria:

- **Depth of Analysis**: Quality and depth of reflections and analysis in project reports and case studies.
- **Application of Concepts**: Ability to apply course concepts to real-world problems and local contexts.
- Creativity: Innovative approaches and creative solutions proposed in projects and reflections.
- Presentation Skills: Clarity, coherence, and professionalism in the final presentation.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop the ability to apply the principles of engineering ethics in their professional life.	К3
CO2	Develop the ability to exercise gender-sensitive practices in their professional lives	K4
CO3	Develop the ability to explore contemporary environmental issues and sustainable practices.	K5
CO4	Develop the ability to analyse the role of engineers in promoting sustainability and climate resilience.	K4
CO5	Develop interest and skills in addressing pertinent environmental and climate-related challenges through a sustainable engineering approach.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3	2	3	3	2		2
CO2		1				3	2	3	3	2		2
CO3						3	3	2	3	2		2
CO4		1				3	3	2	3	2		2
CO5						3	3	2	3	2		2

	Reference Books						
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year			
1	Ethics in Engineering Practice and Research	Caroline Whitbeck	Cambridge University Press & Assessment	2nd edition & August 2011			
2	Virtue Ethics and Professional Roles	Justin Oakley	Cambridge University Press & Assessment	November 2006			
3	Sustainability Science	Bert J. M. de Vries	Cambridge University Press & Assessment	2nd edition & December 2023			
4	Sustainable Engineering Principles and Practice	Bhavik R. Bakshi,	Cambridge University Press & Assessmen	2019			
5	Engineering Ethics	M Govindarajan, S Natarajan and V S Senthil Kumar	PHI Learning Private Ltd, New Delhi	2012			
6	Professional ethics and human values	RS Naagarazan	New age international (P) limited New Delhi	2006.			
7	Ethics in Engineering	Mike W Martin and Roland Schinzinger,	Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi	4" edition, 2014			

Suggested Activities/Projects:

Module-II

- Write a reflection on a local environmental issue (e.g., plastic waste in Kerala backwaters or oceans) from different ethical perspectives (anthropocentric, biocentric, ecocentric).
- Write a life cycle analysis report of a common product used in Kerala (e.g., a coconut, bamboo or rubber-based product) and present findings on its sustainability.
- Create a sustainability report for a local business, assessing its environmental, social, and economic impacts
- Presentation on biodiversity in a nearby area (e.g., a local park, a wetland, mangroves, college campus etc) and propose conservation strategies to protect it.
- Develop a conservation plan for an endangered species found in Kerala.
- Analyze the green spaces in a local urban area and propose a plan to enhance urban ecology using native plants and sustainable design.
- Create a model of a sustainable urban landscape for a chosen locality in Kerala.

Module-III

- Study a local water body (e.g., a river or lake) for signs of pollution or natural flow disruption and suggest sustainable management and restoration practices.
- Analyse the effectiveness of water management in the college campus and propose improvements calculate the water footprint, how to reduce the footprint, how to increase supply through rainwater harvesting, and how to decrease the supply-demand ratio
- Implement a zero waste initiative on the college campus for one week and document the challenges and outcomes.
- Develop a waste audit report for the campus. Suggest a plan for a zero-waste approach.
- Create a circular economy model for a common product used in Kerala (e.g., coconut oil, cloth etc).
- Design a product or service based on circular economy and degrowth principles and present a business plan.
- Develop a plan to improve pedestrian and cycling infrastructure in a chosen locality in Kerala
 Module-IV
- Evaluate the potential for installing solar panels on the college campus including cost-benefit analysis and feasibility study.
- Analyse the energy consumption patterns of the college campus and propose sustainable alternatives to reduce consumption - What gadgets are being used? How can we reduce demand using energy-saving gadgets?
- Analyse a local infrastructure project for its climate resilience and suggest improvements.
- Analyse a specific environmental regulation in India (e.g., Coastal Regulation Zone) and its impact on local communities and ecosystems.

- Research and present a case study of a successful sustainable engineering project in Kerala/India (e.g., sustainable building design, water management project, infrastructure project).
- Research and present a case study of an unsustainable engineering project in Kerala/India highlighting design and implementation faults and possible corrections/alternatives (e.g., a housing complex with water logging, a water management project causing frequent floods, infrastructure project that affects surrounding landscapes or ecosystems).

SURVEY LAB

Course Code	PCCEL307	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GCESL106 /Equivalent	Course Type	Lab

Course Objectives:

- 1. Demonstrate proficiency in chain and compass surveying for practical applications.
- 2. Execute various levelling and theodolite surveying techniques effectively.
- 3. Utilize advanced surveying equipment such as total stations, levels, and GPS
- 4. Employ total station for field surveying, perform contouring, and set out curves.

Demonstrate the use of lidar and GNSS surveying

Expt. No.	Experiments				
	Conventional surveying				
1	a. Chain/ tape surveying				
	b. Compass surveying				
2	Levelling				
2	Differential levelling				
3	Fly levelling				
4	Profile Levelling and Cross sectioning				
5	Distance between inaccessible points (horizontal angle)				
6	Level difference between points (vertical angle)				
7	Tangential tacheometry (vertical angle)				
0	Traversing - Balancing the traverse using Bowditch's rule, Transit rule and graphical				
8	method				
0	Total station survey				
9	Heights and distances				
10	Area computation				
10	Contouring				

11	Setting out of curve- simple curve
12	Setting out of curve - Compound curve using angular methods only
13	Study of instruments a. Automatic level b. Digital level c. Handled GPS
14	Lidar Surveying
15	GNSS Surveying
16	Distance between inaccessible points (horizontal angle)

^{*} A minimum of 12 experiments is mandatory

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.

Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate proficiency in conventional surveying for practical applications.	К3
CO2	Execute various levelling and theodolite surveying techniques effectively.	К3
CO3	Utilize advanced surveying equipment such as total stations, Lidar, GPS etc.	К3
CO4	Employ total station for field surveying, perform contouring, and set out curves.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2							2			
CO2	3	2							2			
CO3	3	2			3				2			3
CO4	3	2			3				2			2

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year			
1	Surveying-Vol 1	B.C. Punmia, Ashok Kumar Jain & Arun Kumar Jain	Laxmi Publications	Seventh, 2016			
2	Textbook of surveying	Venkataramaiah C.	University Press	Second, 2011			
3	Surveying and Levelling	T.P.Kenetkar & S.V.Kulkarni	Pune Vidyarthi Griha Prakashan	Second, 2004			
4	Advanced Surveying	Satheesh Gopi, R Santhikumar, N Madhu	Pearson Education	Second, 2008			

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Surveying Vol. I	S. K. Duggal	Tata McGraw Hill Ltd	Reprint 2015
2	A Text book of Surveying and Levelling	R. Agor	Khanna Publishers	2005
3	GPS and GNSS for Land Surveyors	Jan Van Sickle	CRC Press	First, 2023
4	Topographic Laser Ranging and Scanning Principles and Processing	Charles K. Toth, Jie Shan	CRC Press	2009

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Sl. No. Link ID				
1	https://sl-iitr.vlabs.ac.in/				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

FLUID MECHANICS LAB

Course Code	PCCEL308	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0-0-3-0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. To familiarize and understand the different flow measurement equipments, pumps and turbines and the laboratory procedures of experimentation with them.
- 2. To develop the necessary skills of experimentation techniques for the study of flow phenomena in channels/pipes

Expt. No.	Experiments
1	Study of taps, valves, pipe fittings, gauges, Pitot tubes, water meters and current meters
2	Calibration of Pressure gauges
3	Determination of metacentric height and radius of gyration of floating bodies.
4	Verification of Bernoulli's theorem
5	Hydraulic coefficients of orifices and mouth pieces under constant head method and time of emptying method.
6	Calibration of Venturi meter
7	Calibration of Orifice meter
8	Calibration of water meter
9	Calibration of rectangular notch
10	Calibration of triangular notch
11	Determination of coefficient of discharge (Time of Emptying through orifice)
12	Plotting Specific Energy Curves in Open Channel flow
13	Study of Parameters of Hydraulic Jump in Open channel Flow
14	Determination of friction co-efficient in pipes
15	Determination of loss co-efficient for pipe fittings
16	Performance test on turbines (Impulse/Reaction turbines)
17	Performance test on pumps (positive displacement and rotodynamic pumps)

Note: A minimum of 12 Experiments to be completed

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.

Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	To apply theoretical concepts in Fluid Mechanics to conduct laboratory experiments	3			
CO2	To analyse experimental data and interpret the result	3			
CO3	To document the experimentation in prescribed manner	3			
CO4	To study the performance characteristics curve of turbines and pumps	3			

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3							3			
CO2	3	3							3			
CO3	1	2							2			
CO4	3	1										

^{1:} Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Hydraulics and Fluid Mechanics including Hydraulic machines,	Modi P. N. and S. M. Seth,	S.B.H Publishers, New Delhi,	22 nd edition 2019					
2	Flow in Open channels	Subramanya K	Tata McGraw-Hill	5 th edition 2019					
3	Theory and Applications of Fluid Mechanics	Subramanya K	Tata McGraw-Hill	1993					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Fluid Mechanics	Victor Streeter , E. Benjamin Wylie , K.W. Bedford	Mc Graw Hill Publishers.	9th edition 2017					
2	Munson, Young and Okiishi's Fundamentals of Fluid Mechanics	Philip M. Gerhart John I. Hochstein, Andrew L. Gerhart	John Wiley & Sons Inc	9 th edition 2020					
3	Fundamentals Of Fluid Mechanics	Bruce R. Munson, Donald F. Young, Theodore H. Okiishi	John Wiley & Sons Inc	5th edition 2005					
4	Fluid Mechanics	Frank.M.White	Mc Graw Hill Publishers.	9 th edition 2022					

	Video Links (NPTEL, SWAYAM)						
Sl. No.	d. No. Link ID						
1	https://fm-nitk.vlabs.ac.in/						

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

 Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.

- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 4

CIVIL ENGINEERING

MATHEMATICS FOR PHYSICAL SCIENCE - 4

(Group C)

Course Code	GCMAT401	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic calculus.	Course Type	Theory

Course Objectives:

- 1. To familiarize students with the foundations of probabilistic and statistical analysis mostly used in varied applications in engineering and science.
- **2.** To provide the students with the basics of various numerical methods to develop problem solving skills used in various engineering disciplines.

Module No.	Syllabus Description					
1	Random variables, Discrete random variables and their probability distributions, Cumulative distribution function, Expectation, Mean and variance, Binomial distribution, Poisson distribution, Poisson distribution as a limit of the binomial distribution, Joint pmf of two discrete random variables,	9				
	Marginal pmf, Independent random variables, Expected value of a function of two discrete variables. [Text 1: Relevant topics from sections 3.1 to 3.4, 3.6, 5.1, 5.2]					
2	Continuous random variables and their probability distributions, Cumulative distribution function, Expectation, Mean and variance, Uniform, Normal and Exponential distributions, Joint pdf of two Continuous random variables, Marginal pdf, Independent random variables, Expectation value of a function	9				
	of two continuous variables. [Text 1: Relevant topics from sections 3.1, 4.1, 4.2, 4.3, 4.4, 5.1, 5.2]					

	Confidence Intervals, Confidence Level, Confidence Intervals and One-side					
3	confidence intervals for a Population Mean for large and small samples	9				
	(normal distribution and t-distribution), Hypotheses and					
	Test Procedures, Type I and Type II error, z Tests for Hypotheses about					
	a Population Mean (for large sample), t Test for Hypotheses about a					
	Population Mean (for small sample), Tests concerning a population proportion					
	for large and small samples.					
	[Text 1: Relevant topics from 7.1, 7.2, 7.3, 8.1, 8.2, 8.3, 8.4]					
	Newton-Raphson Method, Gauss Elimination Method ,Gauss - Jordan					
	Method, Numerical solution of ordinary differential equations-Euler's					
4	method, Modified Euler's method, Runge - Kutta method of 2 nd Order,	9				
	Numerical solution of Laplace equation -Jacobi's Method, Curve Fitting by					
	Method of Least Squares - Straight lines, Parabola.					
	(T. 12 B.) 11 11 12 12 12 12 12 12 12 12 12 12 12					
	(Text 2: Relevant topics from sections 2.5, 4.2, 7.5, 8.4, 8.5, 9.4)					

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the concept, properties and important models of discrete	К3
	random variables and to apply in suitable random phenomena.	
CO2	Understand the concept, properties and important models of continuous random variables and to apply in suitable random phenomena.	К3
CO3	Estimate population parameters, assess their certainty with confidence intervals, and test hypotheses about population means and proportions using <i>z</i> -tests and the one-sample <i>t</i> -test.	К3
CO4	Apply numerical methods to find solutions of linear system of equations, ordinary differential equations and Laplace equations.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	-	-	-	-	-	-	-	2
CO2	3	3	2	2	-	-	-	-	-	-	-	2
CO3	3	3	2	2	-	-	-	-	-	-	-	2
CO4	3	3	2	2	-	-	-	-	-	-	-	2

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Probability and Statistics for Engineering and the Sciences	Devore J. L	Cengage Learning	9 th edition, 2016					
2	Introductory Methods of Numerical Analysis	S S Sastry	PHI Learning Pvt Limited	5 th edition, 2012					

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Probability, Random Variables and Stochastic Processes,	Papoulis, A. & Pillai, S.U.,	McGraw Hill.	4 th edition, 2002				
2	Introduction to Probability and Statistics for Engineers and Scientists	Ross, S. M.	Academic Press	6 th edition, 2020				
3	Numerical methods for	Steven C. Chapra,	McGraw Hill	8 th edition,				
	Engineers	Raymond P. Canale	Education	2021				

Video Links (NPTEL, SWAYAM)						
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/117/105/117105085/					
2	https://archive.nptel.ac.in/courses/117/105/117105085/					
3	https://archive.nptel.ac.in/courses/117/105/117105085/					
4	https://archive.nptel.ac.in/courses/111/107/111107105/					

SOIL MECHANICS

(Common to Civil Engineering Branches)

Course Code	PCCET402	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET205 or equivalent	Course Type	Theory

Course Objectives:

- 1. To understand the fundamental concepts of index and engineering properties of soil
- 2. To study laboratory methods to find soil characteristics
- 3. To study stress distribution in soil
- 4. To study shear, compaction and consolidation characteristic of soil

Modul e No	Syllabus Description	Contact Hours
No.	Nature of soil and functional relationships: Introduction to geotechnical engineering—Soil types — Major soil deposits of India - 3 phase system — Basic soil properties: Void ratio, porosity, degree of saturation, air content, water content, specific gravity, unit weight - Relationship between basic soil properties, Relative Density- Numerical problems. Determination of Water content by oven drying, Specific gravity using pycnometer & specific gravity bottle - Determination of Field density by sand replacement method and Core Cutter method - Numerical problems. Soil	12
	Structure and their effects on the basic soil properties –Basic structural units of clay minerals (introduction only)	

	Index properties: Sieve analysis, Hydrometer analysis-strokes law,	
	calibration of hydrometer, corrections to hydrometer readings, gradation of	
2	soil, combined sieve and hydrometer analysis, limitations, [no derivation	10
	required for percentage finer and diameter].	12
	Consistency – Atterberg Limits and indices – Plasticity charts – activity of	
	soil-laboratory tests for Liquid Limit (Casagrande's apparatus and cone	
	penetrometer), Plastic Limit and Shrinkage Limit - Numerical problems IS	
	classification of soil.	
	Permeability of soils: Darcy's law – Factors affecting permeability –	
	Laboratory tests: Constant head and variable head permeability tests -	
	Average permeability of stratified deposits - Numerical problems	
	Principle of effective stress - Total, neutral and effective stress - Pressure	
	diagrams in layered soil with water table, saturated by capillary action,	
	subjected to surcharge load - Numerical problems- Quick sand condition -	
	Critical hydraulic gradient	
	Stress distribution: Introduction - Boussinesq's equations for vertical	
3	pressure due to point loads and line loads - Assumptions and Limitations -	10
	Numerical problems - Vertical pressure due to uniformly distributed loads	
	beneath strip, circular [no derivation required] - Numerical problems.	
	Vertical pressure due to loading on rectangular area and Fadum's chart (Brief	
	description only)	
	Approximate methods for vertical stress: Equivalent Point Load method &	
	2:1 Distribution Method - Numerical problems - Pressure Isobars - Pressure	
	bulbs. distribution of contact pressure beneath footings:	
	Compaction Tests - OMC and MDD, Zero Air voids line, IS Light &	
	Heavy- Factors affecting compaction-Numerical problems - Field	
	compaction methods-compaction control –Proctor needle.	
	Consolidation - Definition - Concepts of Coefficient of compressibility and	
	volume compressibility - e-log p curve - Compression index, Recompression	
	index and Pre-consolidation Pressure - Normally consolidated, over	
	consolidated and under consolidated soils - Terzaghi's theory of one-	
	dimensional consolidation with its assumptions (no derivation required) -	
4	average degree of consolidation – Time factor - Coefficient of consolidation	10
	- Numerical problems - Laboratory consolidation test - Determination of	
	Coefficient of Consolidation - Difference between consolidation and	
	compaction.	
	Shear strength of soils- Practical Applications - Mohr-Coulomb failure	
	criterion - Mohr circle method for determination of principal planes and	

stresses- relationship between shear parameters and principal stresses -	
Numerical problems - Brief discussion of Laboratory tests - Triaxial	
compression test - UU, CU and CD tests - Total and effective stress strength	
parameters - Unconfined compression test, Direct shear test and vane shear	
test	

Continuous Internal Evaluation Marks (CIE):

Attendance	Attendance Assignment/ Microproject		Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Evaluate the basic soil properties based on tests and functional relationships	К3
CO2	Classify soils based on index properties	К3
CO3	Compute stresses developed in soil under different loading and hydraulic conditions	К3
CO4	Identify and explain various tests to assess the engineering properties of soil.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3										2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Soil Mechanics and Foundation Engineering	Dr. K. R. Arora	Standard Publishers and distributers	Seventh Edition, 2020			
2	Basic and applied soil mechanics	Rangan G. and A.S.R. Rao	New Age International Private Limited	Fourth, 2022			
3	Soil Mechanics and Foundations	Dr. B C Punmia, Er. Ashok Kumar, Dr. Arun Kumar Jain	Laxmi Publicationd (P) ltd	Eighteenth 2015			
4	Principles of Geotechnical Engineering	Das B. M.	Cengage India Pvt. Ltd.	2010			
5	Geotechnical Engineering	Venkatramaiah	Universities Press	2000			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Soil Mechanics and Foundation Engineering,	Purushothamaraj P.	Dorling Indersley (India) Pvt. Ltd.	2013				
2	Numerical Problems, Examples and Objective questions in Geotechnical Engineering,	A V Narasimha Rao and C Venkatramaiah	Universities Press (India) Ltd.,	2000				
3	Soil Mechanics in Engineering Practice	Terzaghi K. and R. B. Peck	John Wiley	1967				
4	Fundamentals of Soil Mechanics	Taylor D.W.	Asia Publishing House	1948				

	Video Links (NPTEL, SWAYAM)					
Sl.No.	Link ID					
1	https://archive.nptel.ac.in/courses/105/101/105101201/ https://archive.nptel.ac.in/courses/105/105/105105168/					

STRUCTURAL ANALYSIS - II

(Common for Civil Engineering Branches)

Course Code	PCCET403	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET303/ Equivalent	Course Type	Theory

Course Objectives:

1. To introduce classical and matrix methods of structural analysis and understand the behaviour of statically indeterminate structures.

Module No.	Syllabus Description	Contact Hours
	Concept of displacement approach to structural analysis:	
	Introduction to displacement methods of analysis. Kinematic	
	indeterminacy	
1	Slope Deflection Method:	11
	Introduction, sign convention, development of slope deflection equation;	
	Analysis of continuous beams including settlement of supports; Analysis	
	of orthogonal rigid plane frames including sway frames with kinematic	
	indeterminacy up to 2	
	Moment Distribution method:	
	Concept and derivation of basic equation, Analysis of beams and non-	
	sway frames; analysis of sway frames (Illustration only)	

	Approximate Methods of Analysis of Multi-storeyed Frames:	
	Analysis for vertical loads-substitute frames-loading condition for	
	maximum hogging and sagging moments in beams and maximum	
2	bending moment in columns.	11
	Analysis for lateral loads – portal method, cantilever method.	
	Plastic Theory: Introduction – plastic hinge concepts – plastic modulus	
	shape factor – redistribution of moments – collapse mechanisms – Plastic	
	analysis of beams and portal frames by equilibrium and mechanism	
	methods. (single storey and single bay frames only)	
	Matrix analysis of structures:	
	Flexibility method:	
2	Definition of flowibility inflyence coefficients. Concerts of abscical	10
3	Definition of flexibility influence coefficients - Concepts of physical approach.	10
	арргоаси.	
	Flexibility matrices for truss and frame elements-load transformation	
	matrix- development of total flexibility matrix of the structure-analysis	
	of simple structures (determinate & indeterminate)-plane truss and plane	
	frame-nodal	
	loads and element loads	
	Stiffness method:	
	Definition of stiffness influence coefficients - Concepts of physical	
	approach.	
4		12
4	Development of stiffness matrices by physical approach-stiffness	12
	matrices for truss and frame elements-displacement transformation	
	matrix-analysis of simple indeterminate structures-plane truss and plane	
	frame-nodal loads and element loads.	
	Introduction to direct stiffness method- stiffness matrix of beam	
	elements, assembly of load vector and stiffness matrix, solution of two	
	span continuous	
	beams.	
[<u> </u>	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply displacement methods of analysis for indeterminate structures.	К3
CO2	Apply approximate methods for analysis of multi-storeyed framed structures	К3
CO3	Understand the principles of plastic theory and apply the same for limit analysis of steel structures.	К3
CO4	Apply the principles of matrix methods of structural analysis.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3										2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Mechanics of Structures Vol I &	S.B. Junnarkar & H.J.	Charotar Publishing	2015				
1	П	Shah	House,	2013				
2	Structural Analysis	Devdas Menon	Narosa Publishers, NewDelhi	3rd edition 2023				
3	Structural Analysis	R.C. Hibbler	Pearson Education	10 th edn. 2022				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Intermediate Structural Analysis,	C.K. Wang	Tata McGraw Hill Publishers	2017				
2	Elementary Structural Analysis	J.B. Wilbur, C.H. Norris, and S. Utku	McGraw Hill, NewYork	2006				
3	Matrix Analysis of Framed Structure	Weaver, W. Jr. and Gere, J.M	CBS Publishers, NewDelhi	2000				
4	Matrix Methods of Structural Analysis	Praveen Nagarajan	CRC Press, Taylor & Francis	2019				

	Video Links (NPTEL, SWAYAM)						
Sl. No	Link ID						
1	https://nptel.ac.in/courses/105105166						
2	https://nptel.ac.in/courses/105106050						
3	https://nptel.ac.in/courses/105105109						

DESIGN OF CONCRETE STRUCTURES

Course Code	PBCET404	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	(PCCEL208 and PCCET303) or equivalent	Course Type	Theory

Course Objectives:

- 1. Analyse reinforced concrete sections for the purpose of design
- 2. Design of structural members ensuring safety and serviceability
- 3. Prepare structural drawings of various elements of a framed structure
- 4. Analyse and design of a framed RCC structure using software
- 5. Solve a real field structural design problem

Module No.	Syllabus Description	Contact Hours
	Properties of Concrete and Steel, Philosophies of Design by Limit State Method, Introduction of IS 456:2000 design provisions	
1	Limit State of Collapse in Flexure - Singly Reinforced Rectangular Beams Computation of Parameters of Governing Equations Determination of Neutral Axis Depth and Computation of Moment of Resistance- Numerical Problems	9
	Limit State of Collapse in Shear - Numerical Problems Bond, Anchorage, Development Length and Splicing Torsion in Beams - Limit State of Collapse Numerical Problems on design and analysis of Singly Reinforced Rectangular Beams	

	Doubly Reinforced Beams - Theory and Problems Flanged Beams - Theory	
2	and IS Code provisions only	9
	One-way slabs - Basic Principles, Theory and design - Numerical Problems	
	Design of Two-way Slabs - Numerical Problems	
	Limit State of Serviceability - Introduction to IS code provisions only	
3	Compression members - Definitions, Classifications, Guidelines and	9
	Assumptions - modes of failure.	
	Analysis of Short Axially Loaded Compression Members under Axial Load	
	with Uniaxial Bending & Biaxial bending - Numerical Problems	
	Design of Short Columns under Axial Load with Uniaxial Bending & Biaxial	
	bending - Numerical Problems.	
	Foundations - Shallow foundations - isolated foundations - Design of square	
_	and rectangular foundation Numerical Problems (Only axially loaded	
4	condition is expected)	9
	Modelling and design of a simple framed structure in any structural analysis	
	and design software. (Example: A double storied structure with three rooms	
	in GF and FF)	

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 6 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	40
carrying 2 marks	Each question can have a maximum of 2 sub	40
	divisions.	
(8x2 =16marks)	(4x6 = 24 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Analyse reinforced concrete sections for the purpose of design	К3
CO2	Design of structural members ensuring safety and serviceability	К3
CO3	Analyse and design of a framed RCC structure using software	К3
CO4	Prepare structural drawings of various elements of a framed structure	K4
CO5	Solve a real field structural design problem	K6

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										
CO2	3	3						2				2
CO3	3	3			3			2				3
CO4	3	3	2		3			2	3	3		2
CO5	3	3	3	3	3	2		3	3	3		3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Limit Sate Design of Reinforced Concrete	B.C Punmia, Ashok Kumar Jain, Arun Kumar Jain	Laxmi Publications	10 th Edition, 2015			
2	Reinforced Concrete Design	Ravi Kumar Sharma, Rachit Sharma	BS Publications	2021			
3	Design of Concrete Structures	J N Bandyopadhyay	PHI Learning Private Limited	2008			

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Reinforced Concrete Design – Principles and Practice	N Krishna Raju, R N Pranesh	New Age International Publishers	2007		
2	Design of Reinforced Concrete Structures	M L Gambhir	PHI Learning Private Limited	4 th Edition, 2011		
3	Limit State Design of Concrete Structures	Ramchandra, Virendra Gehlot	Scientific Publishers (India)	3 rd Edition, 2018		
4	Limit State Design of Reinforced Concrete	P C Varghese	PHI Learning Private Limited	2008		
5	Limit State Design of Reinforced Concrete Structures	P Dayaratnam	CBS Publishers	2017		
6	Design of concrete structures	Arthur H Nilson, David Darwin, Charles William Dolan	McGraw Hill	2010		
7	Design of reinforced concrete structures	N. Subramanian	Oxford university press	2013		
8	Relevant IS Codes: IS 456, IS 875, SP 16, SP34 etc. (Refer the latest updates and download from the official website of bureau of Indian standards)					

	Video Links (NPTEL, SWAYAM)					
Sl.No.	Link ID					
1	https://archive.nptel.ac.in/courses/105/105/105105105/					

PBL Course Elements

L: Lecture	R: Project (1 Hr.), 2 Faculty Members			
(3 Hrs.)	Tutorial	Practical	Presentation	
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)	
Group discussion	Project Analysis	Data Collection	Evaluation	
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)	
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation / Video Presentation: Students present their results in a 2 to 5 minutes video	

Assessment and Evaluation for Project Activity

Sl. No	o Evaluation for		
1	Project Planning and Proposal	5	
2	Contribution in Progress Presentations and Question Answer Sessions	4	
3	Involvement in the project work and Team Work	3	
4	Execution and Implementation	10	
5	Final Presentations	5	
6	Project Quality, Innovation and Creativity	3	
	Total	30	

Project Assessment and Evaluation criteria (30 Marks)

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

ADVANCED SOLID MECHANICS

(Common to Civil Engineering branches)

Course Code	PECET411	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	(PCCET205) or equivalent	Course Type	Theory

Course Objectives:

- 1. To explain three-dimensional state of stress, strain and strain energy stored in Elastic body
- 2. To explain behaviour of curved beams, thick cylinders and compound cylinders
- 3. To explain fracture mechanics and mechanics of composite materials.

Module No.	Syllabus Description	Contact Hours
	Elementary concept of elasticity, stresses in three dimensions, Principal	
1	Stresses, Stress Invariants, Mohr's Circle for 3-D state of stress, Octahedral	9
_	Stresses, State of pure shear, plane stress. Differential equations of	
	equilibrium, plane stress problems and plane strain problems comparison.	
	Analysis of strain, State of strain at a point, Strain Invariant, Principal	
	Strains, Plane state of strain, Strain measurements. Compatibility	
2	conditions.	9
	Energy Methods: Work done by forces and elastic strain energy stored.	
	Reciprocal relations, Theorem of virtual work.	
	Bending of beams: Asymmetrical bending, Shear centre, Bending of	
	curved beams, Stress distribution in beam with rectangular, circular and	
3	trapezoidal cross- section, Deflection of thick curved bars.	9
	Axisymmetric problems: Thick walled cylinder subjected to internal and	
	external pressures, Compound cylinders, Shrink fit,	

	Introduction to Mechanics of Composite Materials: Lamina and	
	Laminates, Micromechanics of FRP Composites.	
4	Introduction to Fracture Mechanics: Basic modes of fracture, Fracture toughness evaluation.	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	To explain the three-dimensional state of stress in a body and methods to reduce computational effort.	К3
CO2	To explain the state of strain in a body and establish relation between elastic strain energy stored.	К3
CO3	To explain stress distribution in curved beams of various cross-sections and thick-walled cylinders subjected to internal and external pressure.	К3
CO4	To explain the mechanics of composite materials.	K2
CO5	To explain basic modes of fracture and fracture toughness	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2								1		
CO2	3	2								1		
CO3	3	1								1		
CO4	3	1								1		
CO5	3	2								1		

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Advanced Mechanics of	Arthur P. Boresi, Richard	John Wiley & Sons	6th, 2022		
1	Materials	J. Schmidt	John Whey & Sons	otii, 2022		
2	Advanced Mechanics of Solids	L. S. Srinath	McGraw Hill	21 2017		
2	Advanced Mechanics of Solids	L. S. Silliaui	Education	3rd, 2017		
3	Mechanics of Composite	Robert M. Jones	CRC Press	2nd, 1998		
]	Material	Robert Wr. Jones	CKC Hess	2110, 1998		
4	Fracture Mechanics:	T. L. Anderson	CRC Press	4th 2017		
4	Fundamentals and Application	1. L. Anderson	CRC Pless	4th, 2017		
5	Computational elasticity	Mohammed Ameen	Narosa publishing	2008		
3	Computational clasticity	Wionammed Ameen	house	2008		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Engineering Solid Mechanics: Fundamentals and Applications	A.R. Ragab, and S.E.Bayoumi	CRC Press,	1999			
2	"Elasticity: Theory, Applications and Numerics",	M.H.Sadd	Academic Press	2006			
3	Engineering Mechanics of Solids	Egor P Popov	Pearson Education India	2016			

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID				
1	https://archive.nptel.ac.in/courses/105/106/105106049/				

CONCRETE TECHNOLOGY

Course Code	PECET412	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To understand the characteristics of aggregates and additives, as well as various cement kinds according to their uses in various fields
- 2. To know the concrete tests conducted in the fresh and hardened stages, as well as the behavior of concrete structures
- 3. To comprehend the intended use and design economic conditions for concrete mix proportions.
- 4. To have knowledge on special concrete.

Module No.	Syllabus Description	Contact Hours
	Cement - chemical composition, Bogue's compounds, hydration, hydrated structure, various types of cement, testing of cement as per Indian standard – standard consistency, setting times, fineness, specific gravity.	
1	Aggregates - Utility in concrete, fine and coarse aggregates, effect of geometry & texture, strength, mechanical properties, moisture content, water absorption, bulking of sand, deleterious substances, sieve analysis, aggregate grading and gradation curves - testing as per Indian Standards	9
	Admixtures - types, necessity and benefit . Mineral admixture - Fly ash, silica fume, blast furnace slag, and agro waste based pozzolans. Chemical admixtures - Accelerator, retarder, plasticizer and superplasticizer, their	
	functions and dosage.	

2	Properties of fresh concrete- factors affecting workability, slump test compacting factor test, Vee Bee consistometer test, flow test. Properties of hardened concrete – modulus of elasticity, compressive strength, split tensile strength, flexural strength. effect of water cement ratio on properties of concrete. Maturity of concrete (concept only). Creep - factors affecting creep - effect	
	of creep Shrinkage- factors affecting and types. Non-destructive testing of concrete- surface hardness test- ultrasonic pulse velocity method, pull-out test- core test, measuring reinforcement cover.	
3	Mix proportioning- Mix design ,nominal mix, design mix , concept of mix design, variables of proportioning - general considerations. Various methods of mix design - design of concrete mix as per IS 10262-2019 Statistical quality control of concrete, mean strength, standard deviation, coefficient of variation, sampling and testing, acceptance criteria. Special concrete - lightweight concrete, heavy weight concrete ,high strength concrete, high performance concrete, self compacting concrete,	9
	roller compacted concrete, fibre reinforced concrete - polymer concrete- pumped concrete - ready mix concrete -geopolymer/alkali activated concrete.	
4	Durability of concrete, factors affecting durability, permeability, cracking, reinforcement corrosion, carbonation, chloride penetration, sulphate attack, acid attack, fire resistance, frost damage, alkali silica reaction. 3D concrete printing, underwater concrete, mass concrete; slip form construction, Sprayed Concrete.	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Learn how to apply engineering concepts to the application of concrete materials in the construction fields.	K2
CO2	Understand the behaviour of concrete and relevant tests, at its fresh and hardened state.	K2
CO3	Understand the factors influencing concrete mix & know the BIS method of mix design.	К3
CO4	Differentiate special concrete from conventional concrete along with their applications for practical purpose	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3											3
CO3	3	2										3
CO4	3						2					3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Properties of Concrete	Neville A.M	Pearson Education India.	5e, 2012						
2	Concrete Technology	R. Santhakumar	Oxford Universities Press,	2018						
3	Concrete Technology	Shetty M. S.	S. Chand & Dr.; Co.,	2018						

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Concrete Technology	M.L. Gambhir. –	Tata Mc. Graw Hill Publishers, New Delhi	5e 2017							
2	Concrete microstructure properties and materials	P. Kumar Mehta, Paulo J.M.Monteiro	Tata Mc. Graw Hill Publishers, New Delhi	4e 2017							
3	IS 10262-2019 concrete mix prop	portioning -guidelines									

	Video Links (NPTEL, SWAYAM)						
Sl. No.	Link ID						
1	https://nptel.ac.in/courses/105102012						
2	https://nptel.ac.in/courses/105104030						
3	https://nptel.ac.in/courses/105106225						
4	https://nptel.ac.in/courses/105106176						

MECHANICS OF FLUID FLOW

(Common for Civil Engineering Branches)

Course Code	PECET413	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET 302	Course Type	Theory

Course Objectives:

- 1. To understand the basic principles of Fluid Mechanics and will be able to apply the basic principles to analyze fluid mechanical systems.
- 2. To understand the basic fundamentals of boundary layer theory, turbulent flow and dimensional analysis

Module No.	Syllabus Description	Contact Hours			
	Basic Concepts and Fundamentals: Fluid statics, Cartesian Tensors, Fluid				
	Kinematics, and Description of fluid motion -Types of motion of fluid				
1	elements, Vorticity and circulation- Concept of rotational and irrotational	9			
	flows. Equation of motion of forced and free vortex flow. Stream function and				
	its relation with velocity field. \(\frac{1}{4}\) – Relation between stream function and				
	velocity potential for a 2-D irrotational and incompressible flow.				
	Pipe Flow: Viscous flow: Reynolds experiment to classify laminar and				
	turbulent flows, significance of Reynolds number, critical Reynolds number,				
2	shear stress and velocity distribution in a pipe, Hagen Poiseuille equation.	9			
	Turbulent flow:, Chezy's equation Moody's chart, siphon, transmission of				
	power through pipes, efficiency of transmission, Water hammer, real life				
	problems causing water hammer, Cavitation.on				
	Concept of Boundary Layer: Growth of boundary layer over a flat plate and				
2	definition of boundary layer thickness, displacement thickness, momentum	0			
3	thickness and energy thickness, laminar and turbulent boundary layers,	9			

	laminar sub layer, velocity profile, Von- Karman momentum integral							
	equations for the boundary layers, calculation of drag, separation of boundary							
	and methods of control.							
	Dimensional Analysis and Hydraulic similitude: Dimensional analysis,							
4	Buckingham's theorem, important dimensional numbers and their	9						
	significance, geometric, Kinematic and dynamic similarity, model studies.							
	Froude, Reynold, Weber, Cauchy and Mach laws- Applications and							
	limitations of model testing, simple problems only.							

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
Total of 8 Questions, each	of which 1 question should be answered.	CO
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Describe the concept of potential flow theory	K2			
CO2	Demonstrate the concept of viscosity on flow characteristics in diverse fluid flow problems	K2			
CO3	Use dimensional analysis to design physical or numerical experiments and to apply dynamic similarity	K2			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3	1	1									
CO3	3	1	2									

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	A Text Book of Fluid Mechanics and Machines	Bansal R. K	Laxmi Publications	2010						
2	Fluid Mechanics	Cengel	McGraw Hill Education India	2014						
3	Fluid Mechanics	Douglas J. F	Pearson Education	2005						
4	Mechanics of Fluids,	Shames I. H	McGraw Hill	1992						

Reference Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Boundary Layer Theory	Schlichting H., K. Gersten ,	Springer	2000.
2	Fluid Mechanics	Streeter V. L., E. B. Wylie and K. W. Bedford,	Tata McGraw Hill, Delhi	2010

CARTOGRAPHY AND GIS

(Common to Civil Engineering Branches)

Course Code	PECET414	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks 60	
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBCET304	Course Type	Theory

Course Objectives:

- 1. Develop a comprehensive understanding of maps, map scales, projections, and GIS principles.
- 2. Gain practical skills in map interpretation, design, and production using modern cartographic methods.
- 3. Acquire skills in acquiring, managing, and analysing spatial data using GIS software and spatial databases.
- 4. Explore applications of geospatial technologies in revisualization, multimedia cartography, and location-based services.

Module No.	Syllabus Description	Contact Hours
1	Maps and Scale: Map - types of maps - interpreting maps - map scale: plain linear, statement, diagonal and comparative, representative fraction. Map Projections: General principles of map projections – classification – cylindrical, conical, and zenithally projections – coordinate systems - UTM – choice of projections.	9
2	Map Layout and Map Production: Data acquisition –Spatial and Non-Spatial Data -Mechanics of map construction -Map design and layout - map reproduction methods: tradition and modern - Cartographic Publication	9

	Modern Cartography: Theories - Geodata Infrastructures - Geovisualization —	
	Visual Data Analytics - Location based services - Multimedia Cartography -	
	Georelief – Mobile Cartography	
	Introduction: Nature of GIS - Real world and representations: Modelling,	
	Maps, Databases and Spatial Databases - Geographic phenomena: fields,	
	objects and boundaries - Data types: nominal, ordinal, interval and ratio -	
	Attribute data.	
3		10
	Data Representation: Tessellations and vector approaches - Topology and	
	spatial relationships - Scale and resolution - Representations of geographic	
	fields and objects - Temporal dimension.	
	Data Management: GIS software - Spatial Data Infrastructure - Spatial data	
	handling - Database management systems – GIS and spatial databases - Data	
4	Input: Spatial data input -Data quality - Data preparation - Point data	8
	transformation	

Continuous Internal Evaluation Marks (CIE):

Attendance	dance Assignment/ Microproject Internal Examination-1 (Written)		Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome						
CO1	Identify and interpret different types of maps effectively and choose appropriate map projections for different mapping needs	K2					
CO2	Apply techniques and tools in map design to produce, and publish visually effective maps using both traditional and contemporary methods.	К3					
CO3	Understand modern cartography theories and geovisualization techniques to represent spatial data.	K2					
CO4	Understand the principles, data handling, and spatial analysis techniques to effectively apply GIS in various real-world scenarios.	K2					
CO5	Understand techniques to acquire, store, and manage spatial data using GIS software and database systems, ensuring data quality and optimizing data handling processes for various applications	K2					

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2								1		
CO2	3	2	2		2					3		
CO3	3	2			2					2		3
CO4	3	2		3	3					2		3
CO5	3	2	2	3	3					2		3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Elements of Cartography	Robinson, A.H. et al.	John Wiley & Sons, U.S.A.	1995
2	Fundamentals of Cartography	Misra, R.P. and Ramesh, A.	Concept Publishing Company	1986
3	Cartography: A Compendium of Design Thinking for Mapmakers	Kenneth Field	ESRI Press	2018
4	Concept and Techniques of geographic Information System	Albert K.W Yeung	PHI Learning private limited New Delhi	Second Edition 2012
5	Introduction to Geographic Information Systems.	Chang, K. T	Tata McGrawHill	2006

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Thematic Cartography and Geovisualization	Terry A. Slocum, Robert B. McMaster, Fritz C. Kessler, and Hugh H. Howard	CRC Press, London	Fourth Edition 2022							
2	GIS: Fundamentals Applications and Implementations	Elangovan K	New India Publishing Agency	2020							
3	GIS and Cartographic Modeling	C. Dana Tomlin	ESRI Press	2012							
4	Web Cartography: Map Design for Interactive and Mobile Devices	Ian Muehlenhaus	CRC Press, London	2014							

	Useful Links						
Sl. No.	Link ID						
1	https://archive.nptel.ac.in/courses/105/107/105107206/						
2	www.esri.com						
3	www.natmo.gov.in						
4	www.surveyofindia.gov.in						
5	www.gsi.gov.in						
6	www. nbsslup.icar.gov.in						

ENGINEERING GEOLOGY

Course Code	PECET416	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

- 1. To give the basics knowledge of Geology that is required for constructing various Civil Engineering Structures surface changes, earth materials etc.,
- To focus on the core activities of engineering geologists –geologic hazard identification and mitigation, ground water problems, geological structures. Planning and construction of major Civil Engineering projects.

Module No.	Syllabus Description	Contact Hours
	Relevance of Geology in Civil Engineering, Branches of Geology.	
	Surface Processes of the earth-Weathering -Types of weathering, Products	
	of weathering. Geological processes by rivers. Geological work by Sea waves	44
1	and currents and coastal protection measures. Landslides-types, causes and	11
	controlling measures.	
	Internal Processes of the earth- Earthquakes- Causes and effects, Seismic	
	waves, concept of intensity and magnitude of earthquake, Seismic zones of	
	India. Basics of seismic safety factor.	
	Mineralogy-Physical properties of minerals, physical properties and	
	chemical composition of minerals like quartz, orthoclase, plagioclase, biotite,	
	muscovite, hornblende, augite, hypersthene, calcite, gypsum.	4.4
2	Petrology- Igneous rocks - Chemical and mineralogical classification,	11
	structures & textures. Sedimentary rocks-types based on mode of formation	
	and structures. Metamorphic rocks-structures only. Megascopic study of	
	granite, dolerite, basalt, sandstone, limestone, shale, gneiss, marble and	
	charnockite, Rock types of Kerala.	

	Hydrogeology- Origin & Occurrence of groundwater, vertical distribution of								
	groundwater. Aquifers and types of aquifers. Porosity and								
3	Permeability/hydraulic conductivity, Darcy's Law. Electrical resistivity survey	9							
	for groundwater exploration. Seawater intrusion in Coastal area, Ghyben-								
	Herzberg relation. Problems created by groundwater to civil engineering								
	structures, Methods to control groundwater problems.								
	Structural Geology – Attitude of rocks – Dip and Strike. Terminology, brief								
	classification and engineering significance of folds, faults and joints. Engineering Geology -Significance of geological Investigations for civil								
4									
	engineering projects. Geological part of site investigation for the construction								
	of dams & reservoirs, tunnels and highways.								

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	CO
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	To understand the dynamic nature of earth, the associated surface and subsurface processes	K2
CO2	To understand basic knowledge about different minerals, various rocks and their classification & identification and their significance in civil engineering.	К2
CO3	To apply basic knowledge about ground water and identify the problems created by ground water for civil engineering projects.	К3
CO4	To analyse the process involved in rock deformation and formation of various geological structures such as folds, faults, joints unconformities and their critical aspects in stability of civil engineering structures.	K4
CO5	To evaluate geological knowledge in planning, designing and construction of various civil projects	K5

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	3											
CO3	3	3					3					
CO4	3											
CO5	3	3										

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Engineering Geology	S.K. Duggal, H.K. Pandey, & N. Rawat	McGraw Hill Education (India) Private Limited.	1 st Edition - 2016
2	Engineering Geology	D. Venkat Reddy	Vikas Publishing House Pvt. Ltd.	2 nd Edition - 2016
3	Textbook of Engineering Geology	N. Chenna Kesavulu	Macmillan India Limited	2 nd Edition -2009
4	Engineering Geology	B.S. Sathya Narayanaswami	Dhanpat Rai & Co.	1 st Edition - 2000
5	Engineering and General Geology	Parbin Singh	S. K. Kataria & Sons	8 th Edition - 2008
6	Principles of Engineering Geology	K.V.G.K. Gokhale	BSP Books	1 st Edition - 2019
7	Engineering Geology	Subinoy Gangopadhyay	Oxford University Press	1 st Edition - 2013

	Reference Books							
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year				
1	Principles Of Physical Geology Arthur Homes Springer		Springer	4 th Edition – 1993				
2	Dana's Textbook Of Mineralogy	William E. Ford	CBS	4 th Edition - 2006				
3	Rutley's Elements Of Mineralogy	C.D. Gribble	CBS	27 th Edition - 2005				
4	The Principles Of Petrology	Tyrrell G.W.	Springer Science & Business Media	2012				
5	Petrology: The Study of Igneous, Sedimentary and Metamorphic Rocks	Loren A. Raymond	Waveland Pr Inc	2 nd Edition - 2007				
6	Groundwater Hydrology	David Keith Todd & Larry W. Mays	Wiley India Pvt Ltd	3 rd Edition - 2011				
7	Structural Geology	Marland P. Billings	Pearson Education	3 rd Edition- 2016				

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/105/105/105106/				

NUMERICAL METHODS FOR ENGINEERS

(Programme Elective for Civil Engineering Branches)

Course Code	PECET417	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/	Course Type	Theory

Course Objectives:

1. To apply numerical methods to solve Civil Engineering problems

Module No.	Syllabus Description	Contact Hours
	Introduction to numerical methods - Errors in numerical computation System	
	of linear algebraic equations -Ill-conditioned systems - Symmetric and	
1	Banded systems. Elimination methods -Gauss Elimination (review), Gauss	9
	Seidel iteration, Factorization method-Choleski's method. System of non-	
	linear equations – Newton-Raphson method.	
	Eigen value problems - largest and smallest Eigen values- Power method,	
	Jacobi's transformation	
	Approximation - Lagrangian and Hermite interpolation, Spline interpolation -	
	Quadratic and Cubic splines (example of equal intervals). Data smoothing by	
2	least squares criterion- non-polynomial models like exponential model and	9
	power equation, Multiple linear regression.	
	Numerical integration - Newton-Cotes open quadrature formulae,	
	Trapezoidal rule, Simpson's rules (Review).	
	Solution of first-order ordinary differential equations - stability of solution,	
	Use of Taylor series, Euler's method, Modified Euler's method, Fourth order	
3	Runge-Kutta method. Higher order equations of initial value type by Runge-	9
	Kutta method.	
	Ordinary differential equations of the boundary value type – Finite difference	
	solution.	

	Partial differential equations in two-dimension - types, Laplace Equation	
4	and Poisson's equation.	9
	Parabolic equations – Explicit finite difference method – Bender-Schmidt	
	method. Crank-Nicholson implicit method. Elliptic equations - Finite	
	difference method.	
	Weighted residual methods for initial value problems and boundary value	
	problems - Collocation method, Method of least squares, Galerkin's	
	method.	

Applications of the methods shall be based on Civil Engineering problems such as Structural analysis problems to determine member forces, traffic simulations, weather prediction, water flow estimation, fluid dynamics simulations, and geotechnical modelling of groundwater movement.

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

At the end of the course students should be able to:

	Course Outcome				
CO1	Describe and apply basic numerical methods to obtain approximate solutions of mathematical problems.	К3			
CO2	Obtain numerical solution of linear and nonlinear algebraic equations.	К3			
CO3	Perform numerical integration for Civil Engineering problems	К3			
CO4	Apply numerical solutions of differential equations to Civil Engineering problems	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2			3							1
CO2	2	2			3							1
CO3	2	2			3							1
CO4	2	2			3							1

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Numerical Methods for	N Krishna Raju, K U	Macmillan Publishers	2000				
1	Engineering Problems	Muthu	India Limited	2000				
2	Numerical Methods for	Grewal B. S	Khanna Publishers					
2	Engineers & Scientists	Grewal B. S	Knanna Publishers					
3	Numerical Methods in Science	Daissaldanan C	C. Chand & Commons	2003				
3	and Engineering	Rajasekharan S	S Chand & Company	2003				
4	Numerical methods	Babu Ram	Pearson	2010				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Numerical Methods for Engineers	Chapra S. C. and R. P. Canale,	McGraw Hill,	2006				
2	Numerical solutions for Differential Equations	Smith G. D.	McGraw Hill.					
3	Modern Methods for Engineering Computations	Ketter and Prawel,	McGraw Hill					
4	Numerical Methods for Initial and Boundary value problems	Rajasekharan S.	Khanna Publishers	1989				

ENVIRONMENTAL LAW AND POLICY

(Common for Civil Engineering Branches)

Course Code	PECET418	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To explain the role of law, policy and institutions in the conservation and management of natural resources as well as pollution control.
- 2. To introduce the laws and policies both at the national and international level relating to environment
- 3. To equip the students with the skills needed for interpreting laws, policies and judicial decisions
- 4. To familiarise students in the concept of international environmental law

Module No.	Syllabus Description	Contact Hours
1	Basic Concepts in Environmental Law: An introduction to the legal system; Constitution, Acts, Rules, Regulations; Indian Judiciary, Doctrine of precedents, judicial review, Writ petitions, PIL—liberalization of the rule of locus standi, Judicial activism. Introduction to environmental laws in India; Constitutional provisions, Stockholm conference; Bhopal gas tragedy; Rio conference. General principles in Environmental law: Precautionary principle; Polluter pays principle; Sustainable development; Public trust doctrine. Overview of legislations and basic concepts	9
2	Forest, Wildlife and Biodiversity related laws: Evolution and Jurisprudence of Forest and Wildlife laws; Colonial forest policies; Forest policies after independence 2 Statutory framework on Forests, Wildlife and Biodiversity: IFA, 1927; WLPA, 1972; FCA, 1980; Biological Diversity Act, 2002; Forest Rights Act, 2006. Strategies for conservation—Project Tiger, Elephant, Rhino, Modulew leopard.	9

3	Air, Water and Marine Laws: National Water Policy and some state policies Laws relating to prevention of pollution, access and management of water and institutional mechanism: Water Act, 1974; Water Cess Act, 1977, EPA, 1986. Pollution Control Boards Ground water and law Judicial remedies and	9
	procedures Marine laws of India; Coastal zone regulations. Legal framework on Air pollution: Air Act,1981; EPA, 1986	
	Hazardous Substances and Activities Legal framework: EPA and rules made	
	thereunder; PLI Act, 199 Principles of strict and absolute liability;	
	International Environmental law: An introduction to International law;	
	sources of international law; law of treaties; signature, ratification Evolution	
4	of international environmental law: Customary principles; Common but	9
	differentiated responsibility, Polluter pays.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Familiar with the laws, policies and institutions in the field of environment	K1
CO2	Acquire the skills needed for interpreting laws, policies and judicial decisions in a holistic perspective	K2
CO3	Acquire the ability to evaluate the role of law and policy in conservation and management of natural resources and prevention of pollution	K2
CO4	Familiar with the concept of international environmental law	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2				2	2	1		1		2
CO2	2	2				2	2	1		1		2
CO3	3	3				2	2	1		2		2
CO4	2	3				2	2	1		1		2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Environmental Law and Policy in India	Divan S. and Rosencranz A.	Oxford, New Delhi	2022			
2	Environmental Law in India	Leelakrishnan P	Lexis Nexis, India	6TH ed.2022			
3	International Law and the Environment	Birnie P	Oxford.	3rd ed. 2009			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Hand Book on Environmental Law- Forest Laws, Wildlife Laws and the Environment; Vols. I, II and III	Upadhyay S. and Upadhyay V	Lexis Nexis- Butterworths-India, New Delhi.	2002			
2	Principles of International Environmental Law	Sands P	Cambridge	2003			

	Video Links (NPTEL, SWAYAM)				
Sl No.	Link ID				
1	https://onlinecourses.swayam2.ac.in/cec20_ge12/preview#:~:text=The%20course%20covers%20the%20following,responsibilities)%20Human%20rights%20to%20environment				

SEMESTER S4 ARCHITECTURAL ENGINEERING

Course Code	PECET415	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBCET304, PCCEL218 (or equivalent)	Course Type	Theory

Course Objectives:

1. To enable students to develop creative and sustainable building design and management solutions based on sound engineering principles and ethics.

Module No.	Syllabus Description	Contact Hours
1	Definition of architecture –Historical development of architecture. Principles of architectural composition – Unity/ harmony – character – balance – proportion – scale –rhythm — Accentuation and contrast. Organising principles in architecture – Symmetry – hierarchy – axis – linear – concentric, radial – and asymmetric grouping – primary and secondary masses. Form and Space in architecture – Positive and negative space – Defining space with horizontal and vertical elements -qualities of architectural space Architecture Design Process: The 7 phases: The pre-design phase: The schematic design phase: The design development phase: The construction documents phase: The building permit phase: The bidding and negotiation phase: The construction administration phase.	9
2	Acoustics, fundamentals: Intensity of sound- Watts/m2- Bel- Decibel scales-dBA-Phon. Addition of sound levels. Acoustical Defects- Echoes, Reverberation, Foci and Dead Spots, Loudness, Noise Acoustics, applications: Recommended sound levels for interiors - Air and structure born noises-Measures of noise control- Source-path and receiving end. TL value and computation of TL value, Flanking paths. Sound absorption-materials and fixings. Reverberation-Sabines formula-Eyrings modification.	9

	Natural lighting: Visual task requirements, Units of Light, Light, Vision and	
	Buildings, Standards of Lighting and Visual comfort-The sky as a source of	
	light, Daylight factor, Recommended daylight factors for interiors.	
	Design of side-lit windows using Daylight factor graphs	
	Artificial lighting: Artificial lighting- illumination requirements-lux meter –	
	lamps and luminaries – polar distribution curves	
	Design of artificial lighting – lumen method – point by point method.	
	Thermal comfort: Factors affecting thermal comfort- effective Temperature	
	Thermal comfort indices-ET-CET Charts- Bioclimatic chart- Psychrometry	
	and Psycrometric chart.	
	Earth-Sun relationship: Sun's apparent movement with respect to the earth.	
	Solar angles	
	Computation of solar radiation on different surfaces-solar path diagram-	
	shadow-throw concept and design of shading devices	
3	Thermal design of buildings: Thermo physical properties of building materials	9
	and thermal control	
	Concept for electrical load calculation of structures	
	Basic concept of HVAC load calculation	
	Functional protection: Causes of fire, Mechanism of fire spread in buildings,	
	classification of fire-High temperature effects and combustibility of building	
	materials and structure- Fire alarm system, and means of escape. Firefighting	
	installations	
	Architecture Design aspect: basic anthropometrics- human functions and their	
	implications for space requirements- movement and circulation diagrams-	
	special interpretations- various activities and their relationship with spaces	
	Perspective views of form: 2-point perspective and 3-point perspective	
	Climate responsive architecture	0
4	Traditional Architecture of Kerala- Scope of Vastuvidya	9
	Dimensional system in Vastuvidya - concept of selection of perimeter -	
	proportions	
	Energy efficiency in buildings - Energy assessment in buildings - Green	
	building rating guidelines – case studies.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Assignment

Students should Identify a real word requirement for a residential building. Develop detailed architectural drawing of it incorporating details, selecting a suitable site, using the concepts learned in the course. Finally, a complete file with documents ready to submit to the authorities and a drawing set which will give the client a 3D concept of the structure should be submitted.

Criteria for evaluation:

1. Problem Definition (K4 - 4 points)

a. Clearly defines the requirements and constrains.

2. Problem Analysis (K4 - 4 points)

a. Compare and justify the proposed schemes with evidence and logical reasoning.

3. Evaluate (K5 - 4 points)

- a. Thoroughly evaluate the proposed solutions.
- b. Compares trade-offs, advantages, and disadvantages.
- c. Considers feasibility, scalability, and practical implications.

4. Design and drawing (K6 - 8 points)

- a. Demonstrates proficiency in creating drawings for technical requirements including approval.
- b. Demonstrates proficiency in creating visually impressive presentation drawings for the clients

Scoring:

- 1. Accomplished (4 points): Exceptional analysis, clear implementation, and depth of understanding.
- 2. Competent (3 points): Solid performance with minor areas for improvement.
- 3. Developing (2 points): Adequate effort but lacks depth or clarity.
- 4. Minimal (1 point): Incomplete or significantly flawed.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	2 questions will be given from each module, out of	
module.	which 1 question should be answered. Each question	
• Total of 8 Questions,	can have a maximum of 3 sub divisions. Each	60
each carrying 3 marks	question carries 9 marks.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
	Use principles of architectural composition and organization for	К3
CO1	development of building form and planning of functional spaces in	
	buildings.	
CO2	Show good understanding of the comprehensive architectural design	К3
002	process, from the pre-design stage to construction management.	
CO3	Adopt principles of acoustics, lighting and thermal comfort for efficient	К3
003	functional design of buildings.	
CO4	Show good understanding of basic service load calculations and fire	К3
004	protection methods for efficient and safe function of buildings.	
CO5	Apply traditional, passive, climate conscious architectural principles for	K5/K6
	creating energy efficient buildings.	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1										2
CO2	2	1										2
CO3	2	1					2					2
CO4	2	1										2
CO5	3	2					2					2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	A global history of architecture	Francis D. K. Ching , Mark M. Jarzombek , Vikramaditya Prakash	Wiley	3 rd edition 2017			
2	Architecture: Form, Space, and Order	Francis D. K. Ching	Wiley	5 th edition 2023			
3	Architecture And Town Planning	Satish Chandra Agarwala	Dhanpath Rai &Co	2018			
4	Architectural Engineering Design: Mechanical Systems	Robert Butler Brown	Mc Graw Hill	1 st edition			
5	Building Services Engineering	David Chadderton	T&F India	6 th Edition 2017			
6	Architectural Acoustics	Marshall Long	Academic Press	2014			
7	Lighting	Pritchard, D.C	Longman Scientific & Technical, Harlow	1995			
8	Daylight in Architecture	Benjamin Evans	McGraw - Hill Book Company	1981			
9	Building Environment	AjithaSimha.D	Tata McGraw Hill Publishing Co	1985			
10	Design and Installation of Services in Building complexes &High Rise Buildings	Jain. V.K.,	Khanna Tech. Publishers	1986			
11	A text book of Vastuvidya	A. Achyuthan, Balagopal. T.S. Prabhu	Vastuvidyaparatishthanam	1996			
12	Manual of tropical Housing and Building Part I – Climatic design	Koenigseberger	Orient Longman	2011			

Reference Books							
Sl.	Title of the Book	Name of the	Name of the	Edition			
No	Title of the book	Author/s	Publisher	and Year			
1	Architecture: From Prehistory to Climate Emergency	Barnabas Calder	Pelican	2021			
2	Building construction illustrated	Francis D. K. Ching	Wiley	6 th edition 2017			
3	Architectural Engineering Design: Mechanical Systems	Robert Butler Brown	Mc Graw Hill	1 st edition			
4	Acoustical Design in Architecture	Knudsen V.O. and Harris C.M	John Wiley	1980			
5	Energy Efficient Buildings: Architecture, Engineering, and Environment	Wayne Forster and Dean Hawkes	W.W. Norton Company Inc	2002			
6	Bureau of Indian standards, Handbook on Functional Requirement of Buildings – SP:41(S and T)-1987						
7	National Building Code of India (latest revisions to be refered)						
8	Bureau of Energy Efficiency, Buildings,2014.	India. Design Guidelines	for Energy Efficient N	Aulti-Storey			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/124/107/124107005/ https://nptel.ac.in/courses/124107012					
2	https://archive.nptel.ac.in/courses/105/102/105102175/					
3	https://archive.nptel.ac.in/courses/105/107/105107156/					
4	https://nptel.ac.in/courses/101104065 https://archive.nptel.ac.in/noc/courses/noc22/SEM1/noc22-ar03/					

ECONOMICS FOR ENGINEERS

(Common to All Branches)

Course Code	UCHUT346	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 min,
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understanding of finance and costing for engineering operation, budgetary planning and control
- 2. Provide fundamental concept of micro and macroeconomics related to engineering industry
- 3. Deliver the basic concepts of Value Engineering.

Module No.	Syllabus Description		
1	Basic Economics Concepts - Basic economic problems - Production Possibility Curve - Utility - Law of diminishing marginal utility - Law of Demand - Law of supply - Elasticity - measurement of elasticity and its applications - Equilibrium- Changes in demand and supply and its effects Production function - Law of variable proportion - Economies of Scale - Internal and External Economies - Cobb-Douglas Production Function	6	

2	Cost concepts – Social cost, private cost – Explicit and implicit cost – Sunk cost - Opportunity cost - short run cost curves - Revenue concepts Firms and their objectives – Types of firms – Markets - Perfect Competition – Monopoly - Monopolistic Competition - Oligopoly (features and equilibrium of a firm)	6
3	Monetary System – Money – Functions - Central Banking –Inflation - Causes and Effects – Measures to Control Inflation - Monetary and Fiscal policies – Deflation Taxation – Direct and Indirect taxes (merits and demerits) - GST National income – Concepts - Circular Flow – Methods of Estimation and Difficulties - Stock Market – Functions- Problems faced by the Indian stock market-Demat Account and Trading Account – Stock market Indicators-SENSEX and NIFTY	6
4	Value Analysis and value Engineering - Cost Value, Exchange Value, Use Value, Esteem Value - Aims, Advantages and Application areas of Value Engineering - Value Engineering Procedure - Break-even Analysis - Cost-Benefit Analysis - Capital Budgeting - Process planning	6

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Case study/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
10	15	12.5	12.5	50

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B			
Minimum 1 and	2 questions will be given from each module, out of which			
Maximum 2 Questions	1 question should be answered. Each question can have			
from each module.	a maximum of 2 sub divisions. Each question carries 8			
• Total of 6 Questions,	marks.	50		
each carrying 3 marks	(4.9. 22. 1.)			
(6x3 =18marks)	(4x8 = 32 marks)			

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the fundamentals of various economic issues using laws and learn the concepts of demand, supply, elasticity and production function.	K2
CO2	Develop decision making capability by applying concepts relating to costs and revenue, and acquire knowledge regarding the functioning of firms in different market situations.	К3
CO3	Outline the macroeconomic principles of monetary and fiscal systems, national income and stock market.	K2
CO4	Make use of the possibilities of value analysis and engineering, and solve simple business problems using break even analysis, cost benefit analysis and capital budgeting techniques.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	1	-	-	-	-	1	-
CO2	-	-	-	-	-	1	1	-	-	-	1	-
CO3	-	-	-	-	1	-	-	-	-	-	2	-
CO4	-	-	-	-	1	1	-	-	-	-	2	-

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Managerial Economics	Geetika, Piyali Ghosh and Chodhury	Tata McGraw Hill,	2015							
2	Engineering Economy	H. G. Thuesen, W. J. Fabrycky	PHI	1966							
3	Engineering Economics	R. Paneerselvam	РНІ	2012							

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Engineering Economy	Leland Blank P.E, Anthony Tarquin P. E.	Mc Graw Hill	7 TH Edition							
2	Indian Financial System	Khan M. Y.	Tata McGraw Hill	2011							
3	Engineering Economics and analysis	Donald G. Newman, Jerome P. Lavelle	Engg. Press, Texas	2002							
4	Contemporary Engineering Economics	Chan S. Park	Prentice Hall of India Ltd	2001							

SEMESTER S3/S4

ENGINEERING ETHICS AND SUSTAINABLE DEVELOPMENT

Course Code	UCHUT347	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Equip with the knowledge and skills to make ethical decisions and implement gender-sensitive practices in their professional lives.
- 2. Develop a holistic and comprehensive interdisciplinary approach to understanding engineering ethics principles from a perspective of environment protection and sustainable development.
- 3. Develop the ability to find strategies for implementing sustainable engineering solutions.

Module No.	Syllabus Description	Contact Hours						
	Fundamentals of ethics - Personal vs. professional ethics, Civic Virtue,							
	Respect for others, Profession and Professionalism, Ingenuity, diligence							
	and responsibility, Integrity in design, development, and research domains,							
	Plagiarism, a balanced outlook on law - challenges - case studies,							
	Technology and digital revolution-Data, information, and knowledge,							
	Cybertrust and cybersecurity, Data collection & management, High							
1	technologies: connecting people and places-accessibility and social	6						
	impacts, Managing conflict, Collective bargaining, Confidentiality, Role							
	of confidentiality in moral integrity, Codes of Ethics.							
	Basic concepts in Gender Studies - sex, gender, sexuality, gender							
	spectrum: beyond the binary, gender identity, gender expression, gender							
	stereotypes, Gender disparity and discrimination in education,							
	employment and everyday life, History of women in Science &							

	Technology, Gendered technologies & innovations, Ethical values and	
	practices in connection with gender - equity, diversity & gender justice,	
	Gender policy and women/transgender empowerment initiatives.	
	Introduction to Environmental Ethics: Definition, importance and	
	historical development of environmental ethics, key philosophical theories	
2	(anthropocentrism, biocentrism, ecocentrism). Sustainable Engineering	
	Principles: Definition and scope, triple bottom line (economic, social and	
	environmental sustainability), life cycle analysis and sustainability metrics.	
	Ecosystems and Biodiversity: Basics of ecosystems and their functions,	6
	Importance of biodiversity and its conservation, Human impact on	
	ecosystems and biodiversity loss, An overview of various ecosystems in	
	Kerala/India, and its significance. Landscape and Urban Ecology:	
	Principles of landscape ecology, Urbanization and its environmental	
	impact, Sustainable urban planning and green infrastructure.	
	Hydrology and Water Management: Basics of hydrology and water	
	cycle, Water scarcity and pollution issues, Sustainable water management	
	practices, Environmental flow, disruptions and disasters. Zero Waste	
	Concepts and Practices: Definition of zero waste and its principles,	
	Strategies for waste reduction, reuse, reduce and recycling, Case studies of	
	successful zero waste initiatives. Circular Economy and Degrowth:	
	Introduction to the circular economy model, Differences between linear and	
3	circular economies, degrowth principles, Strategies for implementing	6
	circular economy practices and degrowth principles in engineering.	
	Mobility and Sustainable Transportation: Impacts of transportation on	
	the environment and climate, Basic tenets of a Sustainable Transportation	
	design, Sustainable urban mobility solutions, Integrated mobility systems,	
	E-Mobility, Existing and upcoming models of sustainable mobility	
	solutions.	
	Renewable Energy and Sustainable Technologies: Overview of	
	renewable energy sources (solar, wind, hydro, biomass), Sustainable	
4	technologies in energy production and consumption, Challenges and	(
4	opportunities in renewable energy adoption. Climate Change and	6
	Engineering Solutions: Basics of climate change science, Impact of	
	climate change on natural and human systems, Kerala/India and the Climate	

crisis, Engineering solutions to mitigate, adapt and build resilience to climate change. Environmental Policies and Regulations: Overview of key environmental policies and regulations (national and international), Role of engineers in policy implementation and compliance, Ethical considerations in environmental policy-making. Case Studies and Future Directions: Analysis of real-world case studies, Emerging trends and future directions in environmental ethics and sustainability, Discussion on the role of engineers in promoting a sustainable future.

Course Assessment Method (CIE: 50 marks, ESE: 50)

Continuous Internal Evaluation Marks (CIE):

Continuous internal evaluation will be based on individual and group activities undertaken throughout the course and the portfolio created documenting their work and learning. The portfolio will include reflections, project reports, case studies, and all other relevant materials.

- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. These groups can be the same ones they have formed in the previous semester.
- Activities are to be distributed between 2 class hours and 3 Self-study hours.
- The portfolio and reflective journal should be carried forward and displayed during the 7th Semester
 Seminar course as a part of the experience sharing regarding the skills developed through various courses.

Sl. No.	Item	Item Particulars		
1	Reflective	Weekly entries reflecting on what was learned, personal	I	5
	Journal	insights, and how it can be applied to local contexts.		
2	Micro project	1 a) Perform an Engineering Ethics Case Study analysis and prepare a report	G	8
	(Detailed	1 b) Conduct a literature survey on 'Code of Ethics for		
	documentation	Engineers' and prepare a sample code of ethics		
	of the project, including methodologies, findings, and	2. Listen to a TED talk on a Gender-related topic, do a literature survey on that topic and make a report citing the relevant papers with a specific analysis of the Kerala context	G	5
	reflections)	3. Undertake a project study based on the concepts of sustainable development* - Module II, Module III & Module IV	G	12

3	Activities	2. One activity* each from Module II, Module III &	G	15
		Module IV		
4	Final	A comprehensive presentation summarising the key	G	5
	Presentation	takeaways from the course, personal reflections, and		
		proposed future actions based on the learnings.		
		Total Marks		50

^{*}Can be taken from the given sample activities/projects

Evaluation Criteria:

- **Depth of Analysis**: Quality and depth of reflections and analysis in project reports and case studies.
- **Application of Concepts**: Ability to apply course concepts to real-world problems and local contexts.
- Creativity: Innovative approaches and creative solutions proposed in projects and reflections.
- Presentation Skills: Clarity, coherence, and professionalism in the final presentation.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop the ability to apply the principles of engineering ethics in their professional life.	К3
CO2	Develop the ability to exercise gender-sensitive practices in their professional lives	K4
CO3	Develop the ability to explore contemporary environmental issues and sustainable practices.	K5
CO4	Develop the ability to analyse the role of engineers in promoting sustainability and climate resilience.	K4
CO5	Develop interest and skills in addressing pertinent environmental and climate-related challenges through a sustainable engineering approach.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3	2	3	3	2		2
CO2		1				3	2	3	3	2		2
CO3						3	3	2	3	2		2
CO4		1				3	3	2	3	2		2
CO5						3	3	2	3	2		2

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Ethics in Engineering Practice and Research	Caroline Whitbeck	Cambridge University Press & Assessment	2nd edition & August 2011			
2	Virtue Ethics and Professional Roles	Justin Oakley	Cambridge University Press & Assessment	November 2006			
3	Sustainability Science	Bert J. M. de Vries	Cambridge University Press & Assessment	2nd edition & December 2023			
4	Sustainable Engineering Principles and Practice	Bhavik R. Bakshi,	Cambridge University Press & Assessmen	2019			
5	Engineering Ethics	M Govindarajan, S Natarajan and V S Senthil Kumar	PHI Learning Private Ltd, New Delhi	2012			
6	Professional ethics and human values	RS Naagarazan	New age international (P) limited New Delhi	2006.			
7	Ethics in Engineering	Mike W Martin and Roland Schinzinger,	Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi	4" edition, 2014			

Suggested Activities/Projects:

Module-II

- Write a reflection on a local environmental issue (e.g., plastic waste in Kerala backwaters or oceans) from different ethical perspectives (anthropocentric, biocentric, ecocentric).
- Write a life cycle analysis report of a common product used in Kerala (e.g., a coconut, bamboo or rubber-based product) and present findings on its sustainability.
- Create a sustainability report for a local business, assessing its environmental, social, and economic impacts
- Presentation on biodiversity in a nearby area (e.g., a local park, a wetland, mangroves, college campus etc) and propose conservation strategies to protect it.
- Develop a conservation plan for an endangered species found in Kerala.
- Analyze the green spaces in a local urban area and propose a plan to enhance urban ecology using native plants and sustainable design.
- Create a model of a sustainable urban landscape for a chosen locality in Kerala.

Module-III

- Study a local water body (e.g., a river or lake) for signs of pollution or natural flow disruption and suggest sustainable management and restoration practices.
- Analyse the effectiveness of water management in the college campus and propose improvements calculate the
 water footprint, how to reduce the footprint, how to increase supply through rainwater harvesting, and how to
 decrease the supply-demand ratio
- Implement a zero waste initiative on the college campus for one week and document the challenges and outcomes.
- Develop a waste audit report for the campus. Suggest a plan for a zero-waste approach.
- Create a circular economy model for a common product used in Kerala (e.g., coconut oil, cloth etc).
- Design a product or service based on circular economy and degrowth principles and present a business plan.
- Develop a plan to improve pedestrian and cycling infrastructure in a chosen locality in Kerala

Module-IV

- Evaluate the potential for installing solar panels on the college campus including cost-benefit analysis and feasibility study.
- Analyse the energy consumption patterns of the college campus and propose sustainable alternatives to reduce consumption What gadgets are being used? How can we reduce demand using energy-saving gadgets?

- Analyse a local infrastructure project for its climate resilience and suggest improvements.
- Analyse a specific environmental regulation in India (e.g., Coastal Regulation Zone) and its impact on local communities and ecosystems.
- Research and present a case study of a successful sustainable engineering project in Kerala/India (e.g., sustainable building design, water management project, infrastructure project).
- Research and present a case study of an unsustainable engineering project in Kerala/India highlighting design and
 implementation faults and possible corrections/alternatives (e.g., a housing complex with water logging, a water
 management project causing frequent floods, infrastructure project that affects surrounding landscapes or
 ecosystems).

MATERIALS TESTING LAB (GROUP C)

Course Code	PCCEL407	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET205/ Equivalent	Course Type	Lab

Course Objectives:

- 1. To provide hands-on experience for the students to determine the material properties
- 2. To impart the knowledge of material properties to identify and make use of it in various fields of engineering

Expt. No.	Experiments
1	Test on stress-strain characteristics of mild steel and Tor Steel by conducting uniaxial
	tension test on rod specimens
2	Shear test on mild steel rod (Compression Testing Machine and Shear Shackle)
3	Flexural behaviour of steel by conducting a bending test on Rolled steel sections (I cross
	section)
4	Torsional behaviour and estimation of modulus of rigidity of steel by conducting torsion
	test on rod specimens
5	Estimation of modulus of rigidity of steel and brass / copper materials utilizing the
	principles of torsional vibrations – Torsion Pendulum.
6	Estimation of toughness of steel specimens by conducting (a) Izod & (b) Charpy impact
	tests.
7	Estimation of hardness properties of engineering materials such as brass, aluminium,
	copper, steel etc.by performing Brinell hardness test
8	Estimation of Hardness properties of engineering materials such as brass, aluminium,
	copper, steel etc.by performing (a) Rockwell hardness test (b) Vicker's hardness test
9	Estimation of modulus of rigidity of steel by performing tension and compression tests
	on spring specimens.

10	Flexural behaviour of timber material by performing bending tests on beam specimens.
11	Estimation of compressive strength of timber specimen.
12	Experiment on verification of Maxwell's reciprocal theorem
13	Demonstration of Fatigue Test
14	Study/demonstration of Strain Gauges and load cells
15	Bend & Rebend test on M S Rods
16	Tensile behaviour of polymeric membranes, textiles, fibres etc.
17	Digital Image Correlation Techniques for the study of material behaviour under various
	loading conditions

^{*} A minimum of 12 experiments is to be completed.

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)		Internal Examination	Total	
5	25	20	50	

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify the behaviour of engineering materials under various forms and stages of loading	К3
CO2	Characterize the elastic properties of various materials.	К3
CO3	Evaluate the strength and stiffness properties of engineering materials under various loading conditions	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2							2			2
CO2	3	2							2			2
CO3	3	2							2			2

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	History of Strength of Materials	S.P. Timoshenko	Dover publications	2003			
2	Engineering Mechanics of Solids	Egor P. Popov	Pearson	2015			

	References
SL No	Title Edition and Year
1	IS 1608: Part 1: 2022 Metallic materials - Tensile testing - Part 1: Method of test at room
	temperature
2	IS 1598 (1977): Method for Izod Impact test of Metals, (Reaffirmed 2020)
3	IS 1757 Part:1(2020): Metallic materials – Charpy Pendulum Impact test Method
4	IS 5242 (1979) Method of Test for determining Shear Strength of Metals, (Reaffirmed 2022)
5	IS 1500 Part:1 (2019): Metallic materials – Brinnel Hardness test Part 1 Test method
6	IS 1500 Part:4 (2019): Metallic materials – Brinnel Hardness test Part 4 table of hardness values
7	IS 1501 Part 1 (2020): Metallic materials – Vickers Hardness test Part 1 Test method
8	IS 1501 Part 4 (2020): Metallic materials – Vickers Hardness test Part 4 table of hardness values
9	IS 1586 Part 1 (2018): Metallic materials – Rockwell Hardness test Part 1 Test method
10	IS 1586 Part 3 (2018): Metallic materials - Rockwell Hardness test Part 3 Calibration of
	reference blocks (Scale A, B, C, D, E, F, G, H, K, N, T)
11	IS 1717 (2018): Metallic Materials – Wire – Simple Torsion Test
12	IS 883 (2016): Design of Structural Timber in Building- Code of Practice. (Reaffirmed 2021)
13	IS 13325 (1992) Determination of Tensile Properties of Extruded Polymer Geogrids Using the
	Wide Strip - Test Method (Reaffirmed Year : 2019)
14	IS17415(2023) Metallic Materials torsion test at room temperature.

	Video Links (NPTEL, SWAYAM)				
Module No. Link ID					
1	www.sm-nitk.vlab.ac.in				
2	www.eerc01-iiith.vlabs.ac.in				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

CIVIL ENGINEERING MODELLING LAB

(Common to C Group)

Course Code	PCCEL408	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	0:0:3:0 ESE Marks	
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCEL208 / Equivalent	Course Type	Lab

Course Objectives:

- 1. The course is designed to introduce the fundamentals of Civil Engineering Drawing and understand the principles of planning.
- 2. The students will be able to learn the drafting of buildings manually and using drafting software such as AutoCAD.

Expt. No.	Experiments
1	Review of drafting software:
1	Plan a single storeyed residential building with flat roof for given requirements and draw
	the site plan, plan, section and elevation.
2	Plan a double storeyed residential building with sloped roof for a set of given requirements
2	for a given plot and draw the site plan, plan, section and elevation. Prepare a file with
	hardcopies of drawings ready to submit for approval from the authorities.
3, 4	Plan a public building-office complex, public health centre, commercial, educational, post
	office, bank and draw the plan, section and elevation: Any two.
5	Plan and prepare plumbing and sanitary drawings of a building.
6	Plan and prepare electrical drawings of a building.
7	Introduction to BIM Software: Draw plan, section & elevation of a single storied residential
	building (Expt 1or 2)
8	Introduction to Project Planning Software: Schedule the construction sequence of a single
	storied residential building
9	Preparation of a contour map of a site from the provided total station survey data
10	Earthwork estimation from the provided total station survey data
11	Simulation of a small water supply pipe network using EPANET
12	Land use data preparation using GIS

• Do a minimum of 10 experiments. All experiments are expected to be completed with the help of computers.

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate the ability to organize civil engineering drawings systematically and professionally.	К3
CO2	Apply the building bye-laws and principles of planning for residential and public building design.	К3
CO3	Apply the learned skills to Plan and prepare drawings of building services like plumbing, wiring etc.	К3
CO4	Utilize computer aided techniques for civil engineering applications including survey, pipe network simulations, planning etc.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2								2		2
CO2	3	3	3					3		2		2
CO3	3	3	3					2		2		2
CO4	3	3	3		3					2	2	2

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Building Drawing and Detailing	Dr. Balagopal T.S. Prabhu	Spades Publishers, Calicut	Revised Edition 2022				
2	Building Drawing With An Integrated Approach to Built Environment	Shah, M.G., Kale, C. M. and Patki, S.Y.	Tata McGraw Hill Publishing Company Limited, New Delhi	5 th edition 2017				
3	Building Planning and Drawing	M.V. Chitawadagi S.S. Bhavikatti	Dreamtech Press	2019				

Sl. No	References
1	National Building Code of India (refer the latest updates)
2	Kerala panchayat building rules (refer the latest updates)
3	Kerala Municipality building rules (refer the latest updates)

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 5 CIVIL ENGINEERING

HYDROLOGY AND WATER RESOURCES ENGINEERING

Course Code	PCCET501	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. To expose the students to the fundamental concepts of groundwater hydrology and its engineering applications.

Module No.	Syllabus Description	Contact Hours
	Hydrologic cycle-precipitation-mechanism, types, forms and measurement	
	using rain gauges, Optimum number of rain gauges, representation of rainfall	
	data-mass curve and hyetograph, computation of mean precipitation over a	
1	catchment, Design rainfall - probable maximum rainfall; IDF curves	11
	(conceptual idea only). Infiltration-measurement by double ring, infiltrometer,	
	Horton's model, infiltration indices. Evaporation –measurement and control	
	Runoff-components of runoff- Hydrograph analysis-Hydrograph from	
	isolated storm-Base flow, separation. Unit hydrograph – uses, assumptions	
	and limitations of unit hydrograph theory. Computation of storm/flood	
	hydrograph of different duration by method of superposition and by	
2	development of S– Hydrograph; Floods-methods of design flood estimation –	11
	Empirical methods; SPF and PMF, Return period (conceptual ideas only)	
	Streamflow measurement-area velocity method of stream gauging, selection	
	of site for stream gauging station, Stage-discharge curve, flow duration curve-	
	uses and characteristics	
	Irrigation-Necessity, Benefits and ill effects. Types: flow and lift irrigation	4.4
3	- perennial and inundation irrigation. Soil-water -plant relationships.	11

	Irrigation efficiencies, Computation o crop water requirement: depth and	
	frequency of Irrigation. Duty and delta, duty-factors affecting and method	
	of improving duty, Computation of crop water requirement by using the	
	concept of duty and delta. Irrigation structures - storage structures -	
	Reservoirs - types, zones, yield of reservoir; determination of storage	
	capacity and yield by mass curve method; Reservoir sedimentation and	
	control - trap efficiency- computation of life of reservoir – river training -	
	diversion structures - layout	
	Vertical distribution of ground water- classification of saturated formation	
	(review) Aquifer properties, Darcy's law, Well hydraulics-Steady radial	
	flow into a fully penetrating well in Confined and Unconfined aquifers;	
4	Types of wells, Types of tube wells; well losses; Yield of open wells-	11
	pumping test and recuperation test. Pollution of ground water- sources,	
	distribution and evaluation of ground water pollution (Brief description	
	only). Artificial recharge of ground water- different techniques.	
1		

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Describe and estimate the different components of hydrologic cycle by processing hydro-meteorological data	К3	
CO2	Determine the crop water requirements for the design of irrigation canals by recollecting the principles of irrigation engineering	К3	
CO3	Describe and apply the principles of reservoir engineering to estimate the capacity of reservoirs and their useful life	К3	
CO4	Demonstrate the principles of groundwater engineering and apply them for computing the yield of aquifers and wells	К3	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3					2					
CO2	3	3					2					
CO3	3	2					2					
CO4	3	3					2					

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Irrigation, Water Resources and Water Power Engineering,	Modi P N	S.B.H Publishers and Distributors, New Delhi	2009			
2	Irrigation and Water Power Engineering,	Punmia B.C., Ashok K Jain, Arun K Jain, B. B. L Pande	Laxmi Publications (P) Ltd.	2009			

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Hand book of Applied Hydrology,	Ven Te Chow	Tata McGraw Hill	1988	
2	Ground Water Hydrology,	Todd D. K.	Wiley	2005	
3	Groundwater	H. M Raghunath	New age International New Delhi	2007	
4	Irrigation and Water Resources Engineering	G. L. Asawa.	New Age International New Delhi	2008	
5	Hydrology and Water Resources Engineering,	Garg S. K.	Khanna Publishers New Delhi	2005	
6	Irrigation Engineering and Hydraulic Structures	Garg S K	Khanna Publishers New Delhi	2006	
7	Engineering Hydrology,	Subramanya K.	Tata McGraw Hill	2013	
8	Hydrology: Principles, Analysis and Design.	Raghunath H.M.	New Age International New Delhi	2006	

	Video Links (NPTEL, SWAYAM)				
Sl No.	Link ID				
1	https://archive.nptel.ac.in/courses/105/104/105104103/				
2	https://archive.nptel.ac.in/courses/105/105/105105110/				
3	https://archive.nptel.ac.in/courses/105/105/105105042/				

TRANSPORTATION ENGINEERING

Course Code	PCCET502	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Design highway cross-section, alignments and pavements, and evaluate highway materials according to standard specifications.
- **2.** Analyse traffic patterns for effective signal design and gain comprehensive knowledge of railway tracks, harbours, docks, tunnels, and airports to facilitate integrated infrastructure design.

Module No.	Syllabus Description	Contact Hours
	Introduction: Classification of roads- based on material, function. Typical	
	cross sections of roads in urban and rural area, Requirements and factors	
	controlling alignment of roads.	
	Geometric design of highways: Design controls and criteria, Design of	
	highway cross section elements.	
1	Design of horizontal alignment - Stopping sight distance, Overtaking sight	12
	distance, super elevation, extra widening, transition curve, length and shift	12
	of transition curve, - worked out problems	
	Design of vertical alignment - gradient - grade compensation - summit	
	curves and valley curves	
	Highway materials: Desirable properties and testing of road aggregates,	
	bituminous materials and sub grade soil	
2	Introduction to Pavements and Pavement Design: Flexible and rigid	
	pavements, Functions of individual layers, Factors influencing pavement	11
	design	

	Flexible pavements: Design of flexible pavements by CBR method and	
	IRC 37: 2018* - worked out problems	
	Rigid pavements: Types of stresses: wheel load stresses, temperature	
	stresses, Critical combination of stresses - worked out problem, Functions	
	of longitudinal, contraction and expansion joints (Design not expected)	
	Traffic engineering: Road user, vehicle characteristics, Macroscopic	
	(Volume, Density and speed) and Microscopic (time and space headway)	
	characteristics of traffic stream- Fundamental diagrams of traffic flow-	
	Greenshield's model (derivation not required), Capacity and Level of	
	Service (Concept only).	
	Traffic Surveys: Data collection and Analysis - Volume, speed, O&D,	
3	parking studies	11
	Types of intersections - At grade and grade separated intersections.	
	Traffic signal systems: Types, Design of isolated signals by Webster's	
	method- Warrants for traffic signal installation	
	Railway Engineering: Component parts of a railway track - functions,	
	concept of Gauges, sleeper density, coning of wheels, cant deficiency,	
	compensation of gradients	
	Introduction to Airport Engineering: Components of airport, selection	
	of site for airport. Runway orientation, basic runway length and corrections	
	required, Design of taxiways.	
	Harbours: classification, features, requirements. Break waters - necessity	
4	and functions, classification.	10
	Docks – Functions and types - dry docks, wet docks	
	Tunnel Engineering: Tunnel – sections, tunnel surveying - alignment,	
	transferring centre grade into tunnel.	

^{*}IRC: 37-2018, Guidelines for the Design of Flexible Pavements is permitted in the examination hall.

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

^{*}IRC: 37-2018, Guidelines for the Design of Flexible Pavements is permitted in the examination hall.

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Apply design criteria to develop highway cross-sections and design horizontal and vertical alignments.	К3
CO2	Apply standard code specifications to evaluate the quality of highway materials and understand the principles of flexible and rigid pavement designs	К3
CO3	Analyse road traffic phenomena through data collection, analysis, and interpretation via surveys; design traffic signals; and understand railway track components and their functions.	К3
CO4	Understand railway systems, harbours, docks, and tunnels, and design airport elements.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2			2						2
CO2	3	3				2		2				2
CO3	3	3				2						2
CO4	3	3				2						2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Highway Engineering	SK Khanna, CEO Justo, A. Veeraragavan	Nem Chand & Bros	R10th Edition - 2017					
2	Principles and Practices of Highway Engineering	Kadiyali, L. R. and N.B Lal,	Khanna Publishers	7e, 2017					
3	Principles of Transportation and Highway Engineering	Rao G. V.	Tata McGrawHill	1996					
4	Railway Track Engineering	Mundrey J. S.	Tata McGraw Hill	4e					
5	Railway Engineering	Rangawala, S.C.	Charotor Publishing House	27e, 2017					
6	Harbour, Dock & Tunnel Engineering	Srinivasan,R.	Charotor Publishing House	30e, 2022					
7	Airport Planning and Design Khanna, S. K. and Arora. M. G., S. S. Ja		Nemchand& Bros	6e, 2019					
8	IRC: 37-2018, Guidelines for the Pavements	IRC, New Delhi	2018						
9	IRC: 58 - 2015, Guidelines for t Pavements	IRC, New Delhi	2015						

Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Planning and Design of Airports,	Horonjeff R. and McKelvy, F.	McGraw Hill	5e, 2010					
2	Transport Planning and Traffic Engineering,	O' Flaherty, C.A (Ed.).	Elsevier	1997					
3	Railway Engineering	Subhash C. Saxena	Dhanpat Rai & Sons						
4	Principles of Pavement Design	Yoder and W Nitezak,	John Wiley	1991					
5	Design of Functional Pavements	Yang	McGraw Hill						
6	Airport Engineering	Rangwala, S. C.	Charotar Publishing Co.	16e, 2016					
7	A course in Docks and Harbour Engineering	Bindra, S.P.	Dhanpat Rai& Sons						
8	Railway Engineering	Chandra, S., Agarwal, M.M.	Oxford University Press, New Delhi	2008					
9	Railway Engineering	Saxena, S., Arora, S. P	Dhanpat Rai & Sons	7e, 2010					
10	A Text Book of Railway Engineering	Subhash C Saxena, Satyapal Arora	Dhanpat Rai & Sons						
11	Design and Construction of Ports and Marine Structures	Quinn A.D.	McGraw Hill						
12	Railway Engineering	Agarwal. M.M.	Prabha & Co. New Delhi	1998					

Video Links (NPTEL, SWAYAM)						
Sl No.	Link ID					
1	https://nptel.ac.in/courses/105105107					
2	https://nptel.ac.in/courses/105107123					
3	https://nptel.ac.in/courses/105107220					

ENVIRONMENTAL ENGINEERING

Course Code	PCCET503	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET302	Course Type	Theory

Course Objectives:

- 1. To equip students with the skills to assess water quality and design appropriate treatment processes to ensure water meets health and safety standards.
- **2.** To study with knowledge of various wastewater treatment processes, including primary, secondary, and tertiary treatments, as well as advanced treatment technologies.

Module No.	Syllabus Description	Contact Hours					
	Introduction to environmental engineering- Population forecast- water						
	demand estimation-types of demand- demand fluctuation						
	Systems of sewerage: separate and combined						
	Layout plan of a conventional water treatment plant- site selection-Intakes-						
1	Screening-types of screens -aeration -aerator types	9					
	Theory and principles of sedimentation-Stoke's Law-Types of settling -						
	Design of plain sedimentation tanks						
	Mechanisms of coagulation and flocculation, popular coagulants and						
	feeding devices						
	Filtration of water-theory of filtration-types of filters - design of a slow						
	sand and rapid sand filter.						
2	Disinfection of water - various methods - advantages and limitations.	9					
	Lay out of water distribution network-types-methods of distribution.						
	Network analysis -Hardy cross and equivalent pipe methods.						
	Layout plan of a conventional waste water treatment plant- site selection-	9					
3	concept of primary, secondary and tertiary treatment, equalization of flow.	9					

	Secondary treatment methods-basic concepts of biological unit processes-	
	aerobic and anaerobic- attached and suspended growth processes	
	(Concepts only)	
	Trickling filter (Concept only)- types- construction & operation-design of	
	trickling filter.	
	Activated sludge process- basic concepts-design of a conventional	
	Activated Sludge Plant.	
	Up flow Anaerobic Sludge Blanket (UASB) reactor (Concept only).	
	Natural waste water treatment systems-Oxidation Ponds and Lagoons-	
	Wetlands and Rootzone systems (Concepts only).	9
4	Low-cost sanitation systems- Design of a septic tank and soak-pit.	,
	Sludge treatment (concepts only) -thickening- digestion- dewatering-	
	drying- composting.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Solve the water demand of a city by using various forecasting methods and treat water	K2				
CO2	Design of slow sand and rapid sand filter and analyse the water distribution network	К3				
CO3	Understanding wastewater treatment processes and design of trickling filter and activated sludge process	К3				
CO4	Awareness about high-rate anaerobic process, oxidation ditches and natural wastewater treatment	K2				
CO5	Design of septic tanks and understanding various sludge treatment processes	К3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2					2					
CO2	3	2	3				2					
CO3	3	2					2					
CO4	3	2					2					
CO5	3	2	3				2					

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Waste Water engineering	Metcalf and Eddy	Tata McGraw Hill publishing Co Ltd	2003						
2	Water supply engineering	S K Garg	Khanna Publishers	37e, 2024						
3	Sewage and air pollution engineering	S K Garg	Khanna Publishers	43e, 2024						

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
		B C Punmia, Arun				
1	Water supply engineering	Kumar Jain, Ashok	Laxmi Publications	2e, 2016		
		Kumar Jain				
		Ashok Kumar Gupta,				
	Wastewater engineering, issues	Vengatesh Uddameri,	CRC Press, Taylor and	10 2022		
2	trends and solutions	Abhradeep, Majumder,	Francis Group	1e, 2023		
		Shripad K. Nimbhorkar				
	Water supply and sanitary	Danawala	Charotar Publishing	202 2022		
3	engineering	Rangwala	House Pvt ltd.	29e, 2022		

Video Links (NPTEL, SWAYAM)			
Sl No.	Link ID		
1	https://nptel.ac.in/courses/103107084		
2	https://archive.nptel.ac.in/courses/127/105/127105018/		
3	https://archive.nptel.ac.in/courses/105/106/105106119/		
4	https://archive.nptel.ac.in/courses/105/104/105104102/		

FOUNDATION ENGINEERING

Course Code	PBCET504	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Goal of this course is to expose the students to the fundamental concepts of foundation engineering.
- **2.** After this course, students will be able to recognize practical problems of foundations in real-world situations and respond accordingly.

Module No.	Syllabus Description	
1	Earth pressure - At rest, active and passive earth pressures - Rankine's theory - Earth pressure and point of application for cohesionless and cohesive soils - Influence of surcharge and water table on earth pressure - Numerical problems - Earth pressure with layered backfill - Numerical problems - Coulomb's theory [concept only] Stability of finite slopes - Toe failure, base failure, slip failure - Swedish Circle Method (Procedure only) - Friction circle method (Procedure only) - Taylor's Stability number - Stability charts (Demo only)	11
2	General Considerations: Functions of foundations - definition of shallow and deep foundation Site investigation and soil exploration: objectives - planning - reconnaissance - Guidelines for choosing spacing and depth of borings [I.S. guidelines only]. Standard Penetration Test – Procedure and correlations - Corrections for SPT value – Numerical Problems - Boring log - Soil profile. Plate load test –	11

	Procedure, uses and limitations-Field test - Plate load test - Procedure, uses	
	and limitations	
	Failure mechanism (General, local and punching shear failure) – situations in	
	which each of them can be expected.	
	Terzaghi's bearing capacity theory for strip footing [no derivation required] –	
	Assumptions -Gross and Net bearing pressure - Ultimate and Safe bearing	
	capacityAllowable soil pressure -Bearing capacity factors- Numerical	
	problems	
	Terzaghi's formulae for circular and square footings - Numerical problems -	
	Factors affecting bearing capacity - Effect of water table on bearing capacity	
	- Numerical problems.	
	Settlement analysis: Introduction- causes of settlement – estimation immediate	
	settlement (I.S. Code) Numerical problems	
	Design of Isolated Footing-Combined footings- Rectangular and Trapezoidal	
3	combined footings - Numerical problems	11
	Raft foundations: Types - Design Principles of raft foundation- Bearing	
	capacity equations for raft on sand (Teng's equation based on SPT value) and	
	for raft on clay (Skempton's formula) - Floating foundations	
	Pile foundations: Uses and classification of piles - Selection of type and length	
	of piles - Bearing capacity of single pile in clay and sand [I.S. Static formulae]	
	- Numerical problems - Dynamic formulae (Modified Hiley formulae only) –	11
4	Numerical Problems - I.S. Pile load test [conventional] - Negative skin friction	11
	- Group action - Group efficiency - Capacity of Pile groups - Numerical	
	problems	

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

Guidelines for Project:

The project should be designed so that students should learn all the basic design steps in foundation design.

- 1. On the first class, while giving introduction to the subject, direct the students to form groups, if any student wish to work individually the faculty shall assess the student's capacity and take appropriate decision.
- 2. Guide the students to visit two site investigation projects (preferably one to design shallow foundation and other to design deep foundations)
- **3.** Students can select any building for the study. The building which they have designed in the previous semester for PBCET404 can be used in this semester also.
- 4. The faculty in charge should provide two sets of soil investigation data for each group. Among them one should be of having adequate bearing capacity at shallow depth and the other with low bearing capacity at shallow depth. The group should calculate allowable bearing capacity and design one shallow and one deep foundation. The group should calculate allowable bearing capacity and design one shallow and one deep foundation.
- 5. For shallow foundation design students should first design the trench/ check the stability of trench. Find the possible unsupported cut. Further they have to find the stable slope in which the trench should be made.
- **6.** The detailed design of shallow foundations with drawings should be prepared considering bearing capacity and settlement.
- 7. While using the second set of soil exploration data students should check the feasibility of both raft and pile foundations.
- **8.** Design of pile foundation is expected with detailed drawings.
- **9.** Prepare a detailed report with all the obtained results.

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	• 2 questions will be given from each	
module.	module, out of which 1 question should	
• Total of 8 Questions,	be answered. Each question can have a	
each carrying 2 marks	maximum of 2 sub divisions. Each	40
(8x2 =16 marks)	(8x2 =16 marks) question carries 6 marks.	
	(4x6 = 24 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the concept of lateral earth pressure and slope stability and apply it for the design of trenches.	К3
CO2	Calculate bearing capacity, pile capacity, and foundation settlement	К3
CO3	Develop soil investigation report	К3
CO4	Design appropriate foundation using the available soil exploration data and superstructure requirement.	К6

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3		2				2			1
CO2	3	2	3						2			1
CO3	3									2		1
CO4	3	3	3		3		2		2	3		2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Basic and Applied Soil Mechanics	Ranjan G. and A. S. R. Rao	New Age International	5e, 2024		
2	Geotechnical Engineering	Arora K. R	Standard Publishers	2020		
3	Foundation engineering	Varghese, P. C.	PHI Learning	2000		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Principles of Geotechnical Engineering	Das B. M	Cengage India Pvt. Ltd	2010		
2	Foundation Design: Principles and Practices	Donald Coduto, William Kitch, Man-chu Yeung	Pearson	3e, 2015		
3	Soil Mechanics and Foundation Engineering	B.N.D. Narasinga Rao	Wiley	2019		

	Video Links (NPTEL, SWAYAM)			
Sl No. Link ID				
1	https://nptel.ac.in/courses/105105176			
2	https://nptel.ac.in/courses/105105207			
3	https://nptel.ac.in/courses/105106144			
4	https://nptel.ac.in/courses/105107120			

PBL Course Elements

L: Lecture	R: Project (1 Hr.), 2 Faculty Members					
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts) Case Study/ Field Survey Report		Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video			

Assessment and Evaluation for Project Activity

Sl.	Evaluation for	Allotted			
No		Marks			
1	Project Planning and Proposal	5			
2	Contribution in Progress Presentations and Question Answer Sessions	4			
3	Involvement in the project work and Team Work	3			
4	Execution and Implementation	10			
5	Final Presentations	5			
6	Project Quality, Innovation and Creativity	3			
	Total 3				

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

SEMESTER S5 ADVANCED STRUCTURAL ANALYSIS

Course Code	PECET521	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET303/ PCCET403	Course Type	Theory

Course Objectives:

- 1. This course provides the fundamental concepts of three hinged arches and matrix analysis of structures, specifically on direct stiffness method.
- 2. This course equips students with the concepts of finite element methods, which in turn is the basis of many structural analysis software, and a brief idea on the concept of structural dynamics.

Module No.	Syllabus Description	Contact Hours
1	Two hinged Arches: Analysis of two hinged arches - Support reactions normal thrust and radial shear at any section of a parabolic arch due to simple cases of loading, influence line for horizontal thrust, bending moment, normal thrust, and radial shear. Matrix Analysis of Structures: Reviewing the definition of flexibility and stiffness influence coefficients, and concepts of physical approach	9
2	Direct stiffness method: Introduction to direct stiffness method-Rotation of axes in two dimensions, stiffness matrix of elements in global co- ordinates from element co-ordinates- assembly of load vector and stiffness matrix, solution of two span continuous beam-single bay single storey portal frame.	9
3	Structural dynamics: Introduction - degrees of freedom - equation of motion, D'Alembert's principle-damping- free response of damped and undamped systems- logarithmic decrement single degree of freedom systems subjected to harmonic load - transient and steady state responses, simple portal frame problems.	9

	Finite Element Methods: Boundary value problems; Introduction to	
_	approximate numerical solutions for solving differential equations.	
4	Formulation techniques: Element equations using weighted residual	9
	approach - the axial element example.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
CO1	Apply suitable methods of analysis for arches.	К3		
CO2	Apply the displacement methods to analyse framed structures.	К3		
CO3	Remember basic dynamics, understand the basic principles of structural dynamics and apply the same to simple structures.	K2		
CO4	Understand the basic features of boundary value problems, and fundamental concept of the finite element method, and develop the ability to generate the governing FE equations for systems governed by partial differential equations.	К3		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	3	1									
CO3	3	3	1									
CO4	3	3	2	1								

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year		
1	Comprehensive Structural	R.Vaidyanathan and	Laxmi Publications	Fourth		
1	Analysis Volume I & II	P.Perumal	(P) Ltd	2024		
2	Elementary Finite Element Method	Desai, C.S.	Prentice Hall of India	1979		
3	Structural Dynamics: Theory	Mario Paz, William	CBS Publishers, New	5 th ed.		
	and Computation	Leigh	Delhi, India	2004		
4	Intermediate Structural Analysis,	Wang C.K.	McGraw Hill Education	2017		
5	Matrix Analysis of Framed Structures	James M Gere & William Weaver	CBS Publishers	2 nd edition 2018		

	Reference Books					
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year		
1	Structural Analysis II	S.S. Bhavikatti	Vikas Publication Houses (P) Ltd	2016		
2	Finite Element Procedures in Engineering Analysis	Bathe, K.J.	Prentice Hall of India	2006		
3	Finite Element Analysis Theory and Programming,	Krishnamoorthy, C.S.	Tata McGraw Hill.	2 nd edition 2017		
4	Dynamics of Structures	Clough R. W. and J. Penzien	McGraw Hill	2 nd edition 2015		
5	Dynamics of Structures- Theory and application to Earthquake Engineering	Chopra A. K.	Pearson Education India	3 rd edition 2008		
6	Structural Analysis,	R.C. Hibbeler	Pearson	10 th Edition 2022		
7	Basic Structural Analysis	Reddy C. S.	Tata McGraw Hill	3 rd edition 2017		

	Video Links (NPTEL, SWAYAM)					
Sl. No.	Sl. No. Link ID					
1	https://archive.nptel.ac.in/courses/105/105/105109/					
2	https://onlinecourses.nptel.ac.in/noc21_ce44/preview					
3	3 https://archive.nptel.ac.in/courses/105/101/105101006/					
4	https://archive.nptel.ac.in/courses/112/104/112104193/					

MODERN CONSTRUCTION TECHNOLOGY

Course Code	PECET522	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Describe the various sustainable materials and smart materials suitable for Construction
- 2. Outline the various technologies and equipment used for smart & economic construction

Module No.	Syllabus Description	Contact Hours
	Sustainable Construction Materials: Wood, bamboo, straw bales, earthen	
	materials, recycled aggregates, recycled plastic products, sustainable	
1	concretes, bio composites	
	Smart & Intelligent materials: Types - Neoprene, Bridge pads, thermocol -	
1	Smart and Intelligent Materials, Special features: - Shape Memory Alloys	9
	(SMAs), Magneto strictive materials, Piezoelectric materials, Electrochromic	
	materials, Green materials including biomaterials, biopolymers, bioplastics -	
	Case studies showing the applications of smart and intelligent materials.	
	Equipment for Earth Work: Fundamentals of earth work operations - earth	
	moving operations - types of earth work equipment - tractors, motor graders,	
	scrapers, front end waders - excavating and earth moving equipment- dozer,	
2	excavators, rippers, loaders - trucks and hauling equipment, compacting	
	equipment, finishing equipment.	9
	Erection Equipment: Cranes, Derrick Cranes, Mobile cranes, Overhead	
	cranes, Traveller cranes, Tower cranes	
	Construction techniques: Construction joints - movement and expansion	
	joints -Vacuum Dewatering of Concrete Flooring - Techniques of	_
3	construction for continuous concreting operation in Tall buildings - Slip Form	9
	techniques—Erection techniques of Tall structures, large Span Structures -	

	Bridge Construction - Construction sequence and methods - Bow string	
	bridges, cable stayed bridges - Launching techniques for heavy decks.	
	Cost-effective construction: Rapid wall construction, soil-cement block	
	masonry, voided slab, filler slab, rat-trap bond, cavity wall, ferrocement and	
	ferro concrete constructions.	
	Prefabricated construction: Advantages and disadvantages, prefabricated	
	components.	
4	Pre-Engineered Buildings: Introduction – Advantages - Pre-Engineered	9
	Buildings Vs Conventional Steel Buildings – Applications	
	Basic concept of prestressing : Fundamental understanding of pre-tensioned	
	and post-tensioned construction.	
	Construction 3D printing.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out of	
• Total of 8 Questions, each	which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	To identify various sustainable and smart materials for structures	K2
CO2	To understand the equipment used in construction	K2
CO3	To outline the construction techniques for tall buildings and bridges	K2
CO4	To understand the advanced technologies for cost effective construction	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					2	2					2
CO2	3					2	2					2
CO3	3					2	2					2
CO4	3					2	2					2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Materials for Civil and Construction Engineers	Michel S. Mamlouk, John P Zaniewski	Prentice Hall	2016				
2	Smart Materials and Structures	Gandhi M. V. and B. S. Thompson	Chapmann & Hall, London	1993				
3	Construction Planning, Equipment and Methods	Peurifoy, R.L., Ledbetter, W.B. and Schexnayder, C	McGraw Hill, Singapore	2006				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Modern Methods of Construction and Innovative Materials	Arthur Lyons	Routledge Taylor & Francis Group	2024			

	Video Links (NPTEL, SWAYAM)					
Sl. No.	Link ID					
1	https://archive.nptel.ac.in/courses/105/106/105106053/					
2	https://archive.nptel.ac.in/courses/105/103/105103206/					

OPEN CHANNEL HYDRAULICS

Course Code	PECET523	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. To familiarize the concepts of different types of open channel flows hydraulics and apply for practical problems

Module No.	Syllabus Description	Contact Hours
1	Open channel flow, Uniform flow - Conveyance and section factor, Hydraulic exponents Computation of discharge through compound channels; Design of channels for uniform flow-Non erodible channel-Minimum permissible velocity-best hydraulic section. Erodible channels which scour but do not silt- Tractive force approach, stable hydraulic section. Velocity distribution in open channels, Pressure distribution in curvilinear flows- flows through spillway crest and spillway bucket.	9
2	Specific energy- specific energy diagram and discharge diagram, Critical flow and its computationHydraulic exponents Application of Specific energy for channel transitions- hump and reduction in channel width	9
3	Gradually varied flow- Dynamic equation of gradually varied flow-different forms; Computation of length of water surface profiles - direct step method, Bresse's method; Standard step method. Rapidly varied flow-Hydraulic jump - sloping and exponential channels, types based on tail water conditions. Uses of hydraulic jumps for energy dissipation below spillways- jump height curve; tail water rating curve; Design features of USBR stilling basins, Standing wave flume, Parshall flume	9

	Unsteady flow through open channels – Surges- positive surges (problems)	
4	and concept of negative surges; Spatially varied flow, dynamic equation of	9
	spatially varied flow, Analysis of spatially varied flow profile.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 = 24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply the principles of uniform flow computation in open channels	К3
CO2	Analyze the specific energy concepts for practical applications	К3
CO3	Analyze the flow through open channels for gradually varied flow cases	К3
CO4	Analyze the rapidly varied flow through open channels and describe its practical applications	К3
CO5	Analyze the unsteady flow and spatially varied flow cases through open channels	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										
CO2	3	3										
CO3	3	3										
CO4	3	3										
CO5	3	3										

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Hydraulics and Fluid Mechanics including Hydraulic machines	Modi P. N. and S. M. Seth,	S.B.H Publishers, New Delhi,	22e, 2019			
2	Flow in Open channels	SubramanyaK	TataMcGraw-Hill	5e, 2019			
3	Open - Channel Flow	Hanif Chaudhary M	Springer	2e, 2007			
4	Theory and Applications of Fluid Mechanics	Subramanya K	Tata McGraw-Hill	1993			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Flow through Open Channels	Chow VT	McGraw Hill, 1959	1959				
2	Flow through Open Channels	Rangaraju K. G	Tata McGraw Hill	1994				
3	Flow through Open Channels,	Srivastava R	Oxford Publishers	2012				

SEMESTER S5

DISASTER MANAGEMENT

Course Code	PECET524	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. Objective of the course is to introduce the concept of disasters, their causes and their mitigation and management.

Module No.	Syllabus Description	Contact Hours
	Hazards and disasters: Introduction to key concepts and terminology: hazard,	
	disasters and types of classifications, vulnerability, exposure, risk, crisis,	
	emergency, capacity, resilience, Carbon footprint. Effect of subsystems of	
1	earth.	9
	Extent and nature of natural hazards, implications of climate change: Earth	
	quakes, Volcanoes, Floods. Coastal disasters- Storm surges, Tsunamis,	
	mitigation methods.	
	Landslides, Causes and prediction,	
2	Soil and soil degradation, erosion and Desertification, Forest fires, their	9
_	mitigation methods.	
	Impacts and assessment: Risk Management and Assessment and Disaster	
	Management cycle.	
3	SWOT Analysis- basic concepts, uses, limitations and	9
	advantages. Disaster management plan and reports, participation of	
	community in disaster management.	
	Hazard and disaster management plans for floods, storm surges, landslides,	
4	earthquakes, forest fires: pre-disaster phase, actual disaster phase, post-	9
	disaster phase	

Relief and Amenities, Relief camps, organization, individual and community	
participation, camp layout, food requirement, water needs, sanitation, security,	
information administration. Technology in disaster management.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain interaction between subsystems of earth that give rise to hazards and their potential for disasters	К2
CO2	Explain the evolving concepts and thoughts of management of hazards and disasters	К2
CO3	Apply the knowledge to find the causes behind natural disasters and evaluate their magnitude and impacts	К3
CO4	Develop management plans for hazards and disasters, and understand the roles of agencies involved	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											1
CO2	3											2
CO3	3	3					2					2
CO4	3		3									1

		Text Books			
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year	
1	Disaster Management	Mrinalini Pandey	Wiley	2e	
2	Disaster Risk Reduction in South Asia	Ariyabandu, M. and Sahni P.	Prentice-Hall (India)	2003	
3	Environmental Geology - Ecology, Resource and Hazard Management	Valdiya, K.S.	McGraw-Hill Education	2013	
4	Disaster Management: Global Problems and Local Solutions	Shaw, R and Krishnamurthy, RR	Springer, Amsterdam	2010	
5	Disaster Management - A Disaster Manager's Handbook	Nick Carter. W.,	Asian Development Bank, Philippines.	1991	
6	Disaster management	Gupta, H.K.	Universities Press (India) Ltd.	2003	
7	Natural and Anthropogenic Disasters- Vulnerability, Preparedness and Mitigation	Jha, M.K.	Springer, Amsterdam.	2010	

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Geological Hazards: Their assessment, avoidance and mitigation	Bell, F.G.	E & FN SPON Routledge, London.	1999							
2	Natural Disasters	Alexander, D.,	Research Press, New Delhi	1993							
3	Handbook of Disaster and Emergency Management	Khorram-Manesh	Kompendiet (Gothenburg).	2017							
4	Disaster Management in India Policies, Institutions, Practices	Rajendra Kumar Pandey	Routledge	2023							

Video Links (NPTEL, SWAYAM)							
Sl. No.	Link ID						
1	https://nptel.ac.in/courses/105104183						
2	https://onlinecourses.swayam2.ac.in/cec19_hs20/preview						

SEMESTER S5
APPLIED HYDROLOGY AND CLIMATOLOGY

Course Code	PECET526	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. To expose the students to the fundamental concepts of groundwater hydrology and its engineering applications.

Module No.	Syllabus Description	Contact Hours
1	Introduction - weather and climate; hydrometeorology- variables affecting precipitation- humidity, vapor pressure, saturation vapor pressure—temperature relation (simple problems), perceptible water, forms and types of precipitation; cloud - types; Monsoon- characteristics of Indian summer monsoon rainfall- climate oscillations and Indian monsoon rainfall, Evapotranspiration - methods of estimation-Blaney Criddle method (problem)- penman method, Penmann-Montieth method	9
2	Causes and effects of climate change, modeling of hydrologic impact of climate change on water resources-typical framework, general circulation models and regional climate models; Downscaling-concept and types, Catchment characteristics, classification of streams - stream pattern and stream order;	9
3	Statistical methods in hydro-climatology: principal component analysis and its use in climate change studies, methods for change point analysis, methods for trend analysis-statistical and graphical methods, stationary and non-stationary series- determination of non-stationarity of hydro-climatic series (no problems)	9
4	Design flood and their Estimation - Different methods; Flood frequency studies -Gumbel's method; Flood Routing-Hydrologic and Hydraulic routing,	9

Flood routing through reservoirs - concept only. Flood routing through	
channels - Muskingum method, determination of Muskingum parameters.	
Flood control methods - Flood forecasting and warning (Brief descriptions	
only)	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Estimate the different components of hydrologic cycle by processing hydro-meteorological data	К3
CO2	Describe the characteristics of hydrological extremes and climate change	K2
CO3	Apply statistical methods in modelling of hydro climatic extremes	К3
CO4	Describe the procedure of flood routing by considering the impact of climate change	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3					2					
CO2	3	2					2					
CO3	3	3					2					
CO4	3	2					2					

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Engineering Hydrology – IV th edition	Subramanya K.	Tata McGraw Hill	2013.					
2	Hydrology: Principles, Analysis and Design- 3 rd edition	Raghunath H.M.	New Age International New Delhi	2006					
3	Statistical Methods in Hydrology and Hydro climatology	Rajib Maity	Springer	2018					
4	A Text Book of Stochastic Hydrology	Jayarami Reddy	Laxmi Publications, New Delhi	2016					

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Hand book of Applied Hydrology	Ven Te Chow.	Tata McGraw Hill	1988				
2	Irrigation and Water Resources Engineering	G.L.Asawa	New Age International New Delhi	2008				
3	Hydrology and Water Resources Engineering,	Garg S. K.	Khanna Publishers New Delhi	2005				
4	Hydro climatology: Perspectives and Applications	M. L. Shelton	Cambridge University Press	2009				

	Video Links (NPTEL, SWAYAM)						
Sl No.	Link ID						
1	https://archive.nptel.ac.in/courses/105/104/105104029/						
2	https://archive.nptel.ac.in/courses/105/101/105101002/						

SEMESTER S5

TOWN PLANNING

Course Code	PECET527	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. To have the knowledge on planning process and to introduce to the students about the regulations and laws related to Town Planning.

Module No.	Syllabus Description	Contact Hours	
	Definition of town planning, Evolution of towns, Objective of town		
	planning, Economic Justification for town planning, Principles of town		
	planning, Necessity of town planning, Origin, Growth and patterns of town		
1	development, distribution of land use, site for ideal town.		
	Migration trends and impacts on urban and rural development, Problems of		
	urban growth-beginning of town planning acts- concept of new towns -		
	comprehensive planning of towns. Re- planning of existing towns		
	Surveys: Definition, Necessity, collection of data, Types of surveys,		
	methods adopted to collect data, Drawings, reports.		
2	Zoning: Definition, Use of land, Objects of zoning, Principles of zoning,	9	
	Aspects, Advantages & Importance zoning, Transition zone, Economy of		
	zoning, Zoning powers, Maps for zoning		
	Housing: Classification of residential buildings- Agencies for housing-		
	Housing finance agencies- problems of housing in India		
	Slums: Causes, characteristics and effects of slums, Slum clearance.		
3	Industries: Classification of industry, Concentration of industry,	9	
	requirements of the industry, Industrial townships.		
	Public Buildings: Location, classification principle of design, town centre,		
	grouping of public buildings.		

Re-planning of existing towns: Objects of re-planning, defects of existing town, data required for re- planning, Urban Renewal projects, Decentralization and Re-centralized, Garden city concept overview.

Continuous Internal Evaluation Marks (CIE):

Attendance Assignment/ Microproject		Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the need of town planning	K2
CO2	Identify the data required for the town planning process and methods used to collect the data	K2
CO3	Apply the town planning strategies in the various levels of town planning	К3
CO4	Understand about the various rules and regulations in town planning	K2
CO5	Analyze the replanning concept of existing towns	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3											
CO3	3	2										
CO4	3					3		3				2
CO5	3	2				3						

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Fundamentals of Town planning	Hiraskar G K	Dhanpat Rai publications	1993					
2	Study of Town and Country planning in India	N.K Gandhi	Indian Town and Country Planning Association	1973					
3	Town planning	Rangwala	Charotar publishing house	2015					
4	Architecture & Town Planning	Satish chamdra Agarwala	DhanpatRai& Co (P) Ltd.	2013					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Traffic Engineering and	Khadiyali L.R.	Khanna Tech	1999					
1	Transport planning	J	Publishers						
2	Text book of Town Planning	Abir Bandyopadhyay	Books & Allied Ltd	2000					
3	Town Planning the basics	Tony Hall	Taylor & Francis Ltd	2019					

	Video Links (NPTEL, SWAYAM)					
Sl. No.	Link ID					
1	https://nptel.ac.in/courses/124107158					
2	https://nptel.ac.in/courses/124105016					
3	https://nptel.ac.in/courses/105107067					

SEMESTER S5

OPTIMIZATION TECHNIQUES AND OPERATIONAL RESEARCH FOR CIVIL ENGINEERS

Course Code	PECET528	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understand the principles of optimization.
- 2. Summarize the concepts of Linear and Non-linear Programming
- 3. Understand the concept of Dynamic programming

Module No.	Syllabus Description	Contact Hours
1	Linear Programming: Introduction and formulation of models; Convexity; simplex method; Two phase method; Degeneracy, non - existent and	9
1	unbounded solutions; Duality in L.P.P. Dual simplex method, Sensitivity analysis; Revised simplex method; transportation and assignment problems	
2	Non-Linear Programming: Classical optimisation methods; Equality and inequality constraints; Lagrange multipliers; & KuhnTucker conditions; Quadratic forms; Quadratic programming.	9
3	Search Methods: One dimensional optimisation; Fibonacci search; multi- dimensional search methods; Univariate search; gradient methods; steepest descent/ascent methods; Conjugate Gradient method; Penalty function approach.	9
4	Dynamic Programming: Principle of optimality; Recursive relations; solution of L.P.Problem; simple examples. Integer Linear Programming: travelling salesman problem	9

^{*}Formulation and solution of Civil Engineering optimization problems such as design of beams and frames, design of reservoirs, signal systems, etc. by different techniques are expected to be covered

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject Internal Examination-1 (Written) Internal Examination- 2 (Written)		Examination- 2	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
CO1	Understand the basic concepts of classical optimization techniques	K2		
CO2	Analyse optimization algorithms	К3		
CO3	Analyse linear and nonlinear programming problems and interpret the solutions	К3		
CO4	Apply optimization methods to solve Civil Engineering Design Problems	К3		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		1							3
CO2	3	3	3		1							3
CO3	3	3	3		1							3
CO4	3	3	3		1							3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Optimisation Theory and Applications	S.S.Rao	Wiley Eastern Ltd., New Delhi					
2	Structural optimization using sequential linear programming	Bhavikatti S. S	Vikas publishing house					
3	Operation Research	Richard Bronson	Schaum's Outline Series					

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Introduction to Optimisation	J.C.Pant	Jain Brothers; New Delhi					

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID				
1	https://archive.nptel.ac.in/courses/105/108/105108127/				
2	https://nptel.ac.in/courses/105103210				

SEMESTER S5

DESIGN OF PRESTRESSED CONCRETE

Course Code	PECET525	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBCET404	Course Type	Theory

Course Objectives:

1. This course will enable students to learn Design of Prestressed Concrete Elements.

Module No.	Syllabus Description	Contact Hours			
	Introduction and Analysis of Members: Concept of Prestressing - Types of				
	Pre-stressing - Advantages - Limitations - Prestressing systems - Anchoring				
	devices - Materials - Mechanical Properties of high strength concrete -				
1	high strength steel - Stress-Strain curve for High strength concrete	9			
	Losses in Prestress: Loss of Pre stress due to Elastic shortening, Friction,				
	Anchorage slip, Creep of concrete, Shrinkage of concrete and Relaxation				
	of steel - Total Loss.				
	Design of Sections for Flexure: Analysis of members at ultimate strength				
	- Preliminary Design - Final Design for Type 1members.	9			
2	Deflection due to gravity loads - Deflection due to prestressing force-Total				
	deflection - Limits of deflection - Limits of span-to-effective depth ratio				
	Design of Sections for Flexure: Analysis of members at ultimate strength				
	- Preliminary Design - Final Design for Type 1 members.				
3	Design for Shear: Analysis for shear - Components of shear resistance	9			
	- Modes of Failure - Limit State of				
	collapse for shear - Design of transverse reinforcement.				
	Different anchorage system and design of end block by latest IS codes.				
4	Conceptual design and detailing of Prestressed deck	9			
	Prestressed beam – cast in situ slab composite Sections- Analysis				

Continuous Internal Evaluation Marks (CIE):

Attenda	nce	Internal Ex	Evaluate	Analyse	Total
5		15	10	10	40

Criteria for Evaluation (Evaluate and Analyse): 20 marks

Assignment

1. Structural design and detailing of composite prestressed beam- cast in situ slab from field- Load calculations has to taken from first principles

Criteria for evaluation:

- 1. Defining objectives (K4 4 points).
- 2. field data collection (K4 4 points)
- 3. Analysis of data (K5 4 points)
- 4. Final design (K4-2 points, K5-2 points)
 - a. Summarizes findings and insights. (K4)
 - b. Reflects critical thinking and informed decision-making. (K5)
- 5. Structural Detailing (K5- 4 marks)

Scoring:

- 1. Accomplished (4 points): Exceptional analysis, clear implementation, and depth of understanding.
- 2. Competent (3 points): Solid performance with minor areas for improvement.
- 3. Developing (2 points): Adequate effort but lacks depth or clarity.
- 4. Minimal (1 point): Incomplete or significantly flawed.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• 2 questions will be given from each	
module.	module, out of which 1 question should	
• Total of 8 Questions, each	be answered. Each question can have a	
carrying 3 marks	maximum of 3 sub divisions. Each	60
(8x3 =24marks)	question carries 9 marks.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the concept, principle, systems and typology of Prestressing	К3
CO2	Apply mechanical principles for analysis of prestress	К3
CO3	Evaluate the flexural, shear and torsional behaviour of prestressed sections	К3
CO4	Apply the principles of composite sections to prestressed members	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3										2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Prestressed Concrete	Krishna Raju.N	Tata McGraw Hill	6e, 2018				
2	Prestressed Concrete Structures	P. Dayaratnam	Medtech	7e, 2017				
3	Prestressed Concrete	N. Rajagopalan	Narosa Publishing House	2017				
4	Prestressed Concrete Design	Praveen Nagarajan	Pearson	2013				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Limit State Design of Prestressed Concrete, - Vol - 1 & 2	Guyon .V	Applied Science Publishers, London	1995			
2	Mechanics of Prestressed Concrete Design	Mallick and Rangaswamy	Khanna Publishers	2014			
3	Prestressed Concrete	Pandit & Gupta	CBS Publishers	2019			
4	Relevant latest IS codes		•	•			

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID				
1	https://archive.nptel.ac.in/courses/105/106/105106118/				

SEMESTER S5

GEOTECHNICAL ENGINEERING LAB

Course Code	PCCEL507	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET402	Course Type	Lab

Course Objectives:

- 1. This laboratory course aims to provide students with hands-on experience in testing and analysing soil properties.
- **2.** Through a series of laboratory experiments, students will learn to evaluate the index properties and engineering properties of the soil.
- **3.** By the end of the course, students will be equipped with the practical skills and knowledge necessary to conduct soil investigations and interpret geotechnical data.

Expt. No.	Experiments
1	Sieve Analysis
2	Determination of Specific Gravity-Pycnometer & Specific Gravity bottle
3	Determination of Water Content-Oven Drying Method
4	Swelling Test-Free Swell
5	Hydrometer analysis
6	Atterberg Limits - Liquid Limit, Plastic Limit, Shrinkage Limit
7	Field Density Test – (i) Core Cutter, (ii) Sand Replacement Method
8	Light Compaction Test (Standard Proctor Test)
9	Direct Shear Test
10	Unconfined Compression Test
11	Consolidation Test
12	Permeability Test- Constant Head Permeability, Variable Head Permeability
13	Triaxial Shear strength Test
14	Flexible wall Permeability Test
15	Determination of Relative Density of Cohesionless soil

Minimum of 12 experiments from among the 15 experiments listed, is to be completed.

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total	
5	25	20	50	

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Determine experimentally the index properties of soil	К3
CO2	Evaluate experimentally the engineering properties of soil	К3
CO3	Analyse the experimental data and document the results	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2							2			2
CO2	3	2							2			2
CO3	3	2								3		2

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Basic and Applied Soil	Ranjan G. and A. S. R.	New Age	4- 2022					
1	Mechanics	Rao,	International Pvt Ltd.	4e, 2022					
2	Soil Mechanics & Foundation Engineering	K.R. Arora	Standard Publisher	2019					

	Reference Books							
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year				
1	Soil Mechanics in Engineering	Terzaghi K. and R. B.	John Wiley	1967				
	Practice	Peck		1507				
2	Relevant latest BIS standards		BIS, New Delhi					

Video Links (NPTEL, SWAYAM)						
Sl No.	Link ID					
1	https://smfe-iiith.vlabs.ac.in/					
2	https://nptel.ac.in/courses/105101084					

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S5

CONCRETE LAB (MT-2)

Course Code	PCCEL508	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. To enable experimental evaluation of properties of the materials used for concrete
- 2. To obtain the characteristics of the materials.

Expt. No.	Experiments
1	Test on Cement: Fineness, normal consistency, initial & final setting time.
2	Test on Cement: Specific gravity and compressive strength
3	Study on soundness of cement.
4	Test on Coarse and Fine Aggregate: Sieve analysis.
5	Test on Coarse and Fine Aggregate: Water absorption, bulk density, void ratio, porosity and specific gravity.
6	Test on bulking of sand.
7	Test on coarse aggregate crushing value
8	Tests on fresh concrete: Measurement of workability of concrete by slump cone test and compacting factor test.
9	Study on workability of concrete by Vee-Bee test and flow test.
10	Concrete mix design by IS code method and casting of cubes, cylinders with designed concrete mixes.
11	Tests on hardened properties of concrete: Compressive, split and flexural strength.
12	Tests on hardened properties of concrete: Modulus of elasticity of concrete
13	Tests on brick, floor and roof tiles as per IS code provision.
14	Study on Non-destructive tests on hardened concrete (Rebound hammer, ultrasonic pulse velocity and Rebar locator).
15	Study on concrete core cutter, concrete penetrometer and crack detection microscope.

Minimum of 12 experiments from among the 15 experiments listed, is to be completed.

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	To describe the basic properties of cement	К3				
CO2	To characterize the physical and mechanical properties of various aggregates.	К3				
CO3	To experimentally evaluate the fresh and hardened properties of concrete	К3				
CO4	To interpret the quality of various construction materials as per IS Code provisions.	К3				

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2							2			2
CO2	3	2							2			2
CO3	3	2							2			2
CO4	3	2			2	2		2	2			3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Concrete Technology, Theory and Practice	M. S. Shetty, A.K Jain	S.Chand & Company	2019				

	Reference Books							
Sl. No	Title of the Book Name of the Author/s Name of the Publisher							
1	Concrete Manual	M. L. Gambhir	Dhanpat Rai & Sons, Delhi.	2004				
2	Properties of Concrete	A. M. Neville	Pitman	2011				
	IS codes on cement: IS 1489(Part 1& 2):2015, IS 269:2015, IS 8112: 2013, IS 4031 (Part 1):1996,							
3	IS 4031 (Part 3):1988, IS 4031 (Part 4): 1988, IS 4031 (Part 5): 1988, IS 4031 (Part 6): 1988,							
	IS 4031 (Part 11): 1988, IS 5513: 1996							
4	IS codes on aggregate: IS 2386(P	art 1):1963, IS 2386(Part 3):	1963, IS 2386 (Part 4): 19	963,				
-	IS 383:2016							
	IS codes on fresh and hardened co	oncrete: IS 1199(Part1 to 7):	2018, IS 10262:2019,					
5	IS 516 Part 1 Sec 1: 2021, IS 516	Part 5 (Sec 1 to 4), IS 516 F	Part 8 Sec 1: 2020, IS 1485	58: 2000,				
	IS 13311 (Part 2):1992							
	IS codes on brick and tiles: IS 34	95 (Part 1 to 6): 2019, IS 10°	77:1992, IS 654:2023, IS	1237: 2012,				
6	IS 13630 (Part 1): 2019, IS 13630) (Part 2): 2019, IS 13630 (P	art 6): 2019, IS 13630 (Pa	art 15): 2019,				
	IS 5454: 2024							
7	Other relevant latest BIS standard	ls						

	Video Links (NPTEL, SWAYAM)			
Sl No.	Link ID			
1	https://cs-iitd.vlabs.ac.in/			
2	https://ms-nitk.vlabs.ac.in/exp/concrete-mix-design/simulation.html			
3	http://digimat.in/nptel/courses/video/105104030/L34.html			
4	http://acl.digimat.in/nptel/courses/video/105102012/L17.html			

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 6 CIVIL ENGINEERING

SEMESTER S6

QUANTITY SURVEYING AND VALUATION

Course Code	PCCET601	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCEL218	Course Type	Theory

Course Objectives:

- 1. To provide a structured and comprehensive framework for the study of two interconnected areas of expertise, Estimation and valuation.
- **2.** To equips students to analyse the rate of various items of work with reference to the standard data and schedule of rate.
- **3.** This course develops the capability of students to prepare detailed estimates of various items of work related to civil engineering construction and also preparation of the valuation of land and buildings.

Module No.	Syllabus Description	Contact Hours
1	Introduction- Quantity Surveying- Basic principles, Role/responsibility of Quantity surveyor at various stages of construction Estimate-Details required, Type of estimate, purposes. Contingencies, Work-charge establishment, Tools and Plant, centage charge, Day work, Prime cost, Provisional sum & provisional Quantity, Overhead charges, Cost index, Contract documents (Brief description only) Bill of Quantity -Typical format-use Item of works- Identify various item of work from the drawings-units of measurement of various materials and works (focus may give to RCC residential building) General rule & method of measurement with reference to Indian Standard Specifications-IS1200.	9

2	Introduction to the use of CPWD schedule of rates as per latest DSR and Analysis of rate as per latest DAR Specifications-General specification of all items of a residential building. Detailed specifications (CPWD specifications) of major item of work like Earth work excavation in foundation, masonry, Reinforced cement concrete, finishing of building work Analysis of rates for Earth work in excavation for foundation, mortars, reinforced cement concrete Works, finishing work, masonry work, stone works, flooring with reference to latest DSR and latest DAR (Data should be given).	9
3	Detailed Estimate- Preparation of detailed measurement using Centre line method & Short wall long wall (separate wall) method for RCC single-storied building (Flat roof) including stair cabin- Residential/office/school building. BOQ preparation of a single-storied RCC building work. Material quantity calculation of the items of work (Rubble, Brick work, Concrete work, Plastering) in detailed estimate prepared for building work. (Data for unit quantity should be provided from DAR) Bar Bending Schedule- Preparation of BBS of RCC beams, slabs, Column footings, Retaining wall. Road estimation-Estimation of earthwork from longitudinal section-metaled road. Estimation of sanitary and water supply work -Water tank, Septic tank, Manhole (No Detailed estimate needed- concept of item of work, its general specification and unit of measurement). Introduction to software tools for quantity surveying	9
4	Valuation – purpose, factor affecting, introduction to terms-Value, Cost, Price, kinds of values Income- Gross income, net income, outgoings, annuity, sinking fund, Year's purchase, Depreciation, obsolescence -Free hold and leasehold properties. Methods of calculating depreciation – straight line method – constant percentage method, sinking fund method and quantity survey method. Methods of valuation – rental method, direct comparison of capital cost, valuation based on profit, depreciation method. Valuation of land (Brief description only)	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions out of three questions from Module III and Module IV.

Part A	Part B	Total
• 2 Questions from each	• Three questions will be given from Module-III, out	
module I & II	of which 2 questions should be answered. (2 x 20=40	
• Total of 4 Questions, each	Marks)	
carrying 3 marks	• Three questions will be given from Module-IV , out	60
	of which 2 questions should be answered (2 x $4 = 8$	
(4 x 3 = 12 marks)	Marks)	
	(40+8 =48 Marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Define basic terms related to estimation, quantity surveying and contract document	K1
CO2	Interpret the item of work from drawings and explain its general specification and unit of measurement.	K2
CO3	Make use of given data from CPWD DAR/DSR for calculating the unit rate of different items of work associated with building construction.	К3
CO4	Prepare detailed measurements (including BBS) and BoQ of various work like buildings, earthwork for road, sanitary and water supply work	К3
CO5	Explain various basic terms related to the valuation of land and building.	K1
CO6	Prepare valuation of buildings using different methods of valuation.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	-
CO2	2	-	-	-	-	-	-	-	-	-	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-
CO4	3	2	-	-	-	-	-	-	-	-	2	-
CO5	2	2	-	-	-	-	-	-	-	-	-	-

	Text Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Estimation and costing in civil engineering	B. N. Dutta	UBS publishers	28 th Revised Edition, 2020	
2	Estimation Costing and Valuation	Rangwala	Charotar publishing house Pvt. Ltd	2017	
3	Estimation and quantity surveying,	Dr. S. Seetha Raman & M. Chinna swami,	Anuradha publications Chennai.	2015	
4	Estimating, Costing, Specification and valuation	M. Chakraborthy	By Author	2006	

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Civil Engineering Estimation and Costing	V N Vazirani& S P Chandola	Khanna Publishers	1968		
2	Methods of measurement of building & civil engineering works	IS 1200-1968	Bureau of Indian Standards, New Delhi	1968		
3	CPWD DAR and DSR		CPWD	2018		
4	CPWD Specifications Vol1 & 2		CPWD	2019		

Video Links (NPTEL, SWAYAM)			
Module No.	Link ID		
1	Building cost estimation simplified - Course (swayam2.ac.in)		

SEMESTER S6

DESIGN OF STEEL STRUCTURES

Course Code	PCCET602	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET501	Course Type	Theory

Course Objectives:

1. The course covers the basic ideas needed to design structural steel members. The students are exposed to many areas related to steel structural design and they learn how to identify and address real-world practical issues.

Module No.	Syllabus Description	Contact Hours
1	Introduction to steel and steel structures, properties of steel, structural steel sections. Introduction to design loads and load combinations, limit state design concepts. Type of Fasteners- Bolts and welds. Types of simple bolted and welded connections-Relative advantages and disadvantages-Modes of failure of bolted connection-Design of bearing type connection and friction connection-Prying forces- Design of bracket connection.	9
2	Welds-specifications and effective area of welds-Fillet and butt connections- Axially loaded connections for plate and angle truss members- Design of bracket connections. Tension Members - Types of sections -Modes of failure-Slenderness ratio- Net area- Concepts of Shear Lag- Design of tension Members-Connections in tension members - Use of lug angles	9
3	Types of compression members and sections–Behaviour and types of failures– Effective Length-Slenderness ratio–Column formula and column curves- Design of solid and built-up columns - Design of Built up laced and battened type	9

	columns . Design of column bases - Slab base and Gusset base	
4	Types of beam sections- Flexural strength and lateral stability of beams- Design of laterally supported and laterally unsupported beams. Design of roof trusses-types-Design loads and load combination- Assessment of wind loads- Design of I section purlin	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

		Assignment/	Internal	Internal		
	Attendance		Examination-1	Examination- 2	Total	
		Microproject	(Written)	(Written)		
I	5	15	10	10	40	

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the behaviour and properties of structural steel members to resist various structural forces and actions and apply the relevant codes of practice	K2
CO2	Analyse the behaviour of structural steel members and undertake design at both serviceability and ultimate limit states	К3
CO3	Explain the theoretical and practical aspects of design of composite steel structure with design aspects	К3
CO4	Apply a diverse knowledge of design of steel engineering practices applied to real life problems.	К3
CO5	Demonstrate experience in the implementation of design of structures on engineering concepts which are applied in field of Structural Engineering	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	2	3	2	-	-	-	-	-	-	-	-	-
CO3	2	3	2	-	-	-	-	-	-	-	-	-
CO4	2	3	3	-	-	-	-	-	-	-	-	-
CO5	2	3	3	-	-	-	-	-	-	-	-	-

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Steel structures: Design and Practice	N Subramanian	Oxford Publication	2010			
2	Design of Steel structures	Duggal S.K.	Tata McGraw-Hill	2017			
3	Design of Steel structures	A. S. Arya, J.L. Ajmani and Awadesh Kumar	Nem Chand and Bros	2014			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Design of Steel Structures	P. Dayaratnam	Wheeler Publishing	1998				
2	Steel design	William T Segui	Cenage Learning	2017				
3	Design of Steel Structures- Vol I and Vol II	Ramachandra S. and Virendra Gehlot	Standard Book House	2011				
4	IS 800-2007, Code of practice for structural steel design		BIS	2007				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/105/105/105105162/					
2	https://archive.nptel.ac.in/courses/105/105/105105162/					
3	https://archive.nptel.ac.in/courses/105/105/105105162/					
4	https://archive.nptel.ac.in/courses/105/105/105105162/					

SEMESTER S6
ADVANCED DESIGN OF CONCRETE STRUCTURES

Course Code	PECET631	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBCET404 ,PCCET602	Course Type	Theory

Course Objectives:

- 1. Intends to brush-up the fundamentals of design of reinforced concrete and steel structures by limit state design and review the usage of relevant codes
- **2.** Make students competent by covering contemporary engineering practices in the structural design
- **3.** Develop the mixed qualities to students in structural engineering point of view independently handling the design problems and to work in a group for team works

Module No.	Syllabus Description	Contact Hours
1	Design of continuous beams—Redistribution of moments- Detailing Reinforced concrete portal frames: Introduction - Analysis and design of rectangular portal frames for vertical loading Approximate methods for structural Analysis and design for vertical loads, Pattern loading, lateral loads	9
2	Retaining Structures- Introduction- Functions and types of retaining walls- Structural analysis and design of RCC cantilever type of retaining wall for various types of backfill conditions. Counterfort retaining wall- design principles of components and detailing (design not required) Introduction to Strut and Tie Method; Design of Deep beams, Corbels and Pile cap	9
3	Introduction to design of water tanks-design philosophy and requirements-joints- IS code recommendations- Design of rectangular circular water tanks using IS code coefficients (IS 3370- 2009). Yield line method of analysis of slabs – Characteristic features of yield lines– analysis by virtual work method – Yield line analysis by equilibrium method.	9

	Flat slabs – Introduction–components–IS Code recommendations– IS code method of design of interior panel (with and without column drop).	
4	Review of the codes –IS 811(1987), IS 801(1975), SP 6-5(1980) Light gauge sections – Types of cross sections – Local buckling and post buckling – Design of compression and Tension members – Design of flexural member - Types of connections and their design	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	30	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

		Bloom's
	Course Outcome	Knowledge
		Level (KL)
	Design and detail cantilever retaining wall and understand the design	
CO1	principles of Counter fort retaining wall. And Design and detail deep	K2, K3
	beams and corbels	
CO2	Design and detail water tanks as per IS code provisions	К3
CO3	Explain Concept of yield line theory and design of different slab using	K2, K3
	yield line theory Design of Flat slabs using IS code provisions.	112, 113
CO4	Analyse and design Cold form light gauge section.	К3
CO5	Use of latest industry standard formula, table, design aids used for	K2, K3
603	design of beams and portal frames under pattern loading.	K2, K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	1	-	-	1	-	-	-	1	-	-
CO2	3	1	1	-	-	-	-	-	-	1	-	-
CO3	3	2	3	-	-	-	-	-	-	1	-	-
CO4	3	2	3	-	-	-	-	-	-	1	-	-
CO5	1	3	2	-	-	-	-	2	2	1	-	1

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	RCC Designs	Punmia, B. C. and Jain	Laxmi Publications	10 th Ed			
		A.K	Ltd.	2015			
2	Design of Steel Structures Vol.	Ramchandra S and	Standard Book House,	12 th Ed			
	Ι	Virendra Gehlot	2007	2018			
3	Advanced Reinforced Concrete	N. Krishna Raju	CBS Publishers &	3rd Ed			
	Design (IS: 456-2000)		Distributors	2016			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Reinforced Concrete Design	Pillai S.U & Menon D	Tata McGraw Hill	4th Edition				
			Book Co.	2021				
2	Advanced Reinforced Concrete	Varghese P.C	Prentice Hall of India	2 nd Revised				
	Design		Pvt Ltd	Edition				
				2010				
3	Relevant IS codes (IS 456, IS							
	875, IS 1893, IS 13920, SP 16,							
	SP 34, IS 801)							
4	Design of Steel Structures	N. Subramanian	Oxford University	2 nd Edition				
			Press	2016				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/					
2	https://archive.nptel.ac.in/courses/					
3	https://archive.nptel.ac.in/courses/					
4	https://archive.nptel.ac.in/courses/					

SEMESTER S6

IRRIGATION AND DRAINAGE ENGINEERING

Course Code	PECET632	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To understand the concepts of irrigation water scheduling, distribution and system performance.
- **2.** To familiarize the concepts of surface and sub-surface systems for drainage of irrigation lands.
- 3. To study the principles behind the reclamation of saline soils

Module No.	Syllabus Description					
1	Surface Irrigation methods: Classification – Border irrigation: design parameters, evaluation and ideal wetting pattern – Furrow irrigation: design parameters, types of furrows, evaluation, ideal wetting pattern – Basin irrigation: types of basins, ideal wetting pattern, shapes and size – Efficiency of surface irrigation methods. Crop Water Requirements: Infiltration and movement of water in soil—Soil-water-plant relationship –Water requirement of crops – Evapo transpiration (ET) and consumptive use - Effective rainfall – Irrigation requirement, Soil water balance, Yield response to water, Production functions Irrigation Water Distribution: Canal network and canal regulation – Methods of distribution: supply based and demand based – Delivery of water	9				

	to farms -Measurement of water - Scheduling of irrigation - Criteria for					
	scheduling, constraints - Frequency and					
	interval of irrigation.					
	Irrigation System Performance Indicators: Systems classification -					
	Rehabilitation and modernization - Performance indicators - Improving					
	system performance –constraints.					
	Land Drainage systems: necessity-types-surfaces and subsurface					
2	drainage-design considerations.	9				
	SoilWater Zone: Description, Flow through soil water zone-Physical	9				
	properties of soil-hydraulic conductivity-saturated thickness-drainable pore					
	space-storativity, hydraulic resistance, leakage factor-Ground water data-					
	concepts of ground water hydrograph, ground water maps, Isobath map, water					
	table fluctuation maps etc.					
	Drainage studies-continuity equation,					
	Laplace equation, relaxation method of solution-Typical boundary conditions					
	like impervious layer, plane of symmetry, free water surface, water at rest or					
	slowly moving water, seepage surface- Dupit Forchheimer Theory steady low					
	above an impervious horizontal boundary-Dupits equation-water table subject					
	to recharge.					
3	Flow into open drains-steady state equations-Hooghoudt equation,	9				
	Principles, applications for design use of nomographs for homogeneous and					
	layered soils- Earnst equation, concept of horizontal vertical and radial flow,					
	application to layered soils.					
	Unsteady state drainage equations-Glover Dum equation, application,					
	concept of Kraijenhoff Vande Leur Mass land equation, application- analysis					
	for constant recharge, intermittent recharge cases.					
	Layout of open drainage systems: types-Field drains, design considerations					
	of ditch drains- Mole drains, design considerations, suitability- Sub-surface					
	drainage systems- Pipe drainage systems design for uniform and non-uniform					
	flow conditions-transport and dewatering situations. Patterns of drainage					
4	system- Drainage criteria formulation for off season drainage, crop season	9				
_	drainage, salt drainage- use of steady state and unsteady state approaches in	,				
	formulation criteria for irrigated areaincorporation of intentional and					
	unavoidable losses					
	Salinity and drainage- cause of salinity, salt balance equation, leaching					
	efficiency, salt equilibrium equation and leaching requirement – salt storage					

equation – expressing equations in electrical conductivity terms-Design of a	
drainage system for an irrigated area based on crop water requirement and	
leaching requirement- Dynamic equilibrium concept.	
Gravity outlet structures- types, location.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Design surface drainage systems for drainage of agricultural lands	К3
CO2	Understand the concepts of systems used for subsurface drainage of water-logged lands	K2
CO3	Assess the leaching requirement of salt affected soils	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Irrigation Theory and Practice	Michel A M	Vikas Publishing House	2008
2	Irrigation Water Management Principles and Practices	Majumdar D P	Prentice Hall of India	2000

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Drainage Principles and Applications, Volumes I to IV	H. P. Ritzema	International Institute for Land Reclamation and Improvement (ILRI)	1979
2	Land Drainage Principles: Methods and Applications	Bhattacharya A K and Michael A M	Konark Publishers Pvt. Ltd.	2003

	Video Links (NPTEL, SWAYAM)				
Module	Link ID				
1	https://archive.nptel.ac.in/courses/126/105/126105010/				
2	https://archive.nptel.ac.in/courses/126/105/126105010/				
3	https://archive.nptel.ac.in/courses/126/105/126105010/				
4	https://archive.nptel.ac.in/courses/126/105/126105010/				

SEMESTER S6
GROUND IMPROVEMENT TECHNIQUES

Course Code	PECET633	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBCET 504	Course Type	Theory

Course Objectives:

- 1. To introduce engineering properties of soft, weak and compressible deposits, principles of treatment for granular and cohesive soils and various stabilization techniques.
- 2. To understand the need of ground improvement techniques

Module	Syllabus Description	Contact
No.	Synabus Description	Hours
	Introduction Need for engineered ground improvement, classification of ground modification techniques; suitability, feasibility and desirability of	
1	ground improvement technique; objectives of improving soil. Emerging trends in ground improvement-Different materials used for ground improvement and its property	9
	Drainage and dewatering : - well point system, shallow & deep well system, vacuum method, electro osmosis method. Comparison between methods	
	Compaction -Introduction, compaction mechanics, Field procedure, surface compaction, Dynamic Compaction, selection of field compaction procedures, compaction quality control.	
2	Drainage Methods- Introduction, Seepage, filter requirements, ground water and seepage control, methods of dewatering systems, Design of dewatering system including pipe line effects of dewatering. Drains, different types of drains. Pre-compression and Vertical Drains: Importance, Vertical drains, Sand	9
	drains, Drainage of slopes, Electro kinetic dewatering, Preloading.	

3	Chemical Modification- Definition, cement stabilization, sandwich technique, admixtures. Hydration – effect of cement stabilization on permeability, Swelling and shrinkage and strength and deformation characteristics. Criteria for cement stabilization. Stabilization using Fly ash. Lime stabilization – suitability, process, criteria for lime stabilization. Bitumen, tar or asphalt in stabilization. Vibration Methods: Introduction, Vibro compaction – blasting, vibratory probe, Vibro displacement compaction – displacement piles, vibro flotation, sand compaction piles, stone columns, heavy tamping	9
4	Grouting And Injection: Introduction, Effect of grouting. Chemicals and materials used. Types of grouting. Grouting procedure, Applications of grouting. Reinforced earth: - mechanism- types of reinforcing elements-reinforcement-soil interaction – applications- reinforced soil structures with vertical faces Geosynthetics – types of geosynthetics – functions of geosynthetics – properties of geosynthetics. Soil nailing & Micro pile-basic concept-construction sequence-areas of application-design considerations-merit and demerit Earth Reinforcement-Reinforcement materials-reinforced earth wall-design considerations-construction procedure	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	A ssignment/	Internal	Internal	
Attendance	Assignment/ Microproject	Examination-1 (Written)	Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Classify the different ground improvement techniques	K1, K2
CO2	Outline the basic concept/ design aspects of various ground improvement methods	K2, K3
CO3	Understand the methods of stabilisation	K2, K3
CO4	Choose different application of geosynthetics and soil stabilisation in Ground improvement	К3
CO5	Understand the methods and properties of reinforced soil	K2, K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	-
CO2	2	-	-	-	-	-	-	-	-	-	-	-
CO3	2	2	-	-	-	-	-	-	-	-	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-
CO5	3	2	-	-	-	-	-	-	-	-	-	-

Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Ground Improvement Techniques	P. Purushothama Raj	Laxmi Publications (P) Ltd.	1 st & 1999
2	Engineering Principles of Ground Modification	Manfred. R. Hausmann	McGraw Hill	1 st & 1989
3	Reinforced soil and its engineering applications	Swami Saran	I. K. International Pvt Ltd	1 st & 2010

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Construction and Geotechnical Method in Foundation Engineering	Robert M. Koerner	McGraw Hill	1 st & 1984			
2	Ground Improvement Techniques	Nihar Ranjan Patra	Vikas Publishing house	1st & 2012			
3	Current Practices in Geotechnical Engineering VolI	Alam Singh and Joshi	International Book Traders	1 st & 1985			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://onlinecourses.nptel.ac.in/noc23_ce78/preview					
2	https://onlinecourses.nptel.ac.in/noc23_ce78/preview					
3	https://onlinecourses.nptel.ac.in/noc23_ce78/preview					
4	https://onlinecourses.nptel.ac.in/noc23_ce78/preview					

SEMESTER S6

REPAIR AND REHABILITATION OF STRUCTURES

Course Code	PECET634	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBCET404	Course Type	Theory

Course Objectives:

- 1. To understand the basic idea about the need of maintenance, repair, rehabilitation and strengthening measures of building structures
- 2. To identify various deterioration mechanisms or damage mechanisms in buildings
- **3.** To study various non-destructive techniques and semi destructive techniques for the damage diagnosis and assessment of a structure at the site
- **4.** To be aware of several practices for maintenance and rehabilitation like surface repair, corrosion protection, structural strengthening etc.
- **5.** To suggest evaluation and repair/maintenance methods for extending the service life of buildings
- **6.** To recognize various demolition methods

Module No.	Syllabus Description	Contact Hours
1	Introduction – Maintenance, importance of maintenance, routine and preventive maintenance, rehabilitation, repair, retrofit and strengthening, need for rehabilitation of structures. Cracks in R.C. buildings - Various cracks in R.C. structures, causes and effects. Damages to masonry structures - Various damages to masonry structures and causes.	9

	Damage diagnosis and assessment - Various aspects of Inspection,	
	Assessment procedure for evaluating a damaged structure, Visual inspection	
	Non-Destructive Testing of structures: Rebound hammer, Ultra sonic	
	pulse velocity.	
	Semi destructive testing of structures: Probe test, Pull out test, Chloride	
	penetration test, Carbonation, Carbonation depth testing, Corrosion activity	
	measurement, Core test.	
	Strength and Durability of Concrete structures - Quality assurance for	
2	concrete – Strength, Durability and Thermal properties of concrete. Effects	
	due to climate, temperature, Sustained elevated temperature, Corrosion -	9
	effects of cover thickness.	
	Substrate preparation - Importance of substrate/ surface preparation,	
	General surface preparation methods and procedure, reinforcing steel	
	cleaning.	
	Repair materials -Various repair materials, Criteria for material selection,	
	Methodology of Selection. Health and safety precautions for handling and	
	applications of repair materials.	
	Special mortars and concretes- Polymer concrete, Sulphur infiltrated	
	concrete, Fibre reinforced concrete, High strength concrete, High	
	performance concrete, Vacuum concrete, Self-compacting concrete, Self-	
3	healing concrete, Geopolymer concrete, Reactive powder concrete, Concrete	9
	made with industrial wastes, Polymer Concrete and Mortar, Quick setting	
	compounds, Gunite and Shot Crete, Expansive cement, Ferro cement,	
	Concrete chemicals.	
	Grouting materials - Gas forming grouts, Salfoaluminate grouts, Polymer	
	grouts, Acrylate and Urethane grouts. Protective coatings - Protective coatings	
	for Concrete and Steel. FRP sheets	
	Crack repair - Various methods of crack repair, Grouting, Routing and	
	sealing, Stitching, Dry packing, Autogenous healing, Overlays, Repair to	
	active cracks, Repair to dormant cracks.	
	Corrosion of embedded steel in concrete – Corrosion of embedded steel in	
4	concrete, Mechanism, Stages of corrosion damage. Repair of various	
	corrosion damages of structural elements by Cathodic protection.	9
	Jacketing - Column jacketing, Beam jacketing, Beam-Column joint	
	jacketing, Reinforced concrete jacketing, Steel jacketing, FRP jacketing.	
	Strengthening of Structural elements due to fire, Leakage, earthquake-	

Epoxy injection, Shoring, Underpinning.	
Demolition Techniques - Non-explosive and Explosive demolition.	
Engineered demolition techniques for dilapidated structures - Wrecking Ball	
Method, Concrete Sawing Method, Top down method, Hydraulic crusher,	
Implosion by delayed detonation technique.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the various distress and damages to concrete and masonry structures	K2
CO2	Examine the damages of the structure using required tests with required surface preparations.	К3
CO3	Understand the types and properties of repair materials and apply various techniques for repairing damaged and corroded structures.	К3
CO4	Proposing wholesome solutions for maintenance /rehabilitation and applying methodologies for repairing and demolishing structures.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	-	-	-	-	-	-	-	-
CO2	2	2	1	-	-	-	-	-	-	-	-	-
CO3	2	2	1	1	-	-	-	-	-	-	-	-
CO4	2	2	3	2	-	-	-	-	-	-	-	-

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year					
1	Concrete repair and maintenance	Peter. H. Emmons	Galgotia publications Pvt. Ltd.	2001					
2	Repair and protection of concrete structures	Noel P. Mailvaganam	CRC Press.	1991					
3	Earthquake resistant design of structures	Pankaj Agarwal, Manish Shrikande	РНІ	2006					
4	Concrete Structures, Materials, Maintenance and Repair	Denison Campbell, Allen and Harold Roper	Longman Scientific and Technical	1991					

Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Failures and repair of concrete structures	S.Champion,	John Wiley and Sons	1961					
2	Diagnosis and treatment of structures in distress	R.N.Raikar	R & D Centre of Structural Designers and Consultants Pvt.Ltd, Mumbai	1994					
3	Handbook on repair and rehabilitation of RCC buildings	CPWD	Government of India	2011					
4	Handbook on seismic retrofit of buildings	A. Chakrabarti et.al.	Narosa Publishing House	2010					

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://youtu.be/NdLwHk-A0hc						
2	https://youtu.be/sjyYppF-uKQ						
3	https://youtu.be/P-PFYAIg-3E						
4	https://youtu.be/geYZYg8csYQ						

SEMESTER S6

SOLID AND HAZARDOUS WASTE MANAGEMENT

Course Code	PECET636	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To create an awareness on different types of solid waste generated, methods of collection, processing and disposal.
- **2.** To study about classification, handling and storage, collection, transportation, treatment of hazardous waste

Module	Syllabus Description	Contact		
No.				
1	Introduction Wastes-Sources and characteristics - Categories of wastes- Municipal, Industrial, Bio-medical, Universal, Construction and demolition, Radioactive, e wastes, Agricultural waste. Functional elements of solid waste management	9		
2	Functional Elements Characteristics of solid waste, Proximate and ultimate analysis, Generation and factors, Storage of solid waste- factors to be considered Collection systems, Routing, Need for transfer operation. Processing techniques- Mechanical volume and size reduction, chemical volume reduction, component separation Resource conservation and recovery.	9		
3	Disposal Of Solid Waste Biochemical methods – Sanitary landfills, composting, anaerobic digesters Sanitary landfills- parts and their functions, design considerations, methods of landfilling advantages and disadvantages, Composting- Stages in aerobic composting, types of composting-Indore and Bangalore process Anaerobic digesters – Stages in anaerobic digestion, Parts of a digester	9		

	Thermo chemical methods -incineration, gasification and pyrolysis, types of					
	incinerators -parts of an incinerator-incinerator effluent gas and composition,					
	advantages and disadvantages					
4	Hazardous Waste					
	Hazardous waste –Definition and Identification, Classification, Handling and					
	Storage, Collection, Transportation Treatment and remedial actions,	9				
	Stabilization and Solidification, Thermal methods, Secure Landfill					

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	Assignment/		Internal	
Attendance	Assignment/	Examination-1	Examination- 2	Total
	Microproject	(Written)	(Written)	
5	5 15		10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)		
CO1	CO1 Classify the various categories of solid waste generated from diverse sources and to outline the issues and scopes associated which each type.			
CO2	Illustrate the various aspects of waste management for solid waste.	K2		
СОЗ	Analyse the various options of waste disposal based on the nature of waste, required end product.	К3		
CO4	Illustrate the classification, handling and storage, collection, transportation, treatment for hazardous waste.	K2		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	2	1	3	3	3	1	2	3	2
CO2	3	2	1	2	1	3	3	3	1	2	3	2
CO3	3	3	2	2	2	3	3	3	1	2	3	2
CO4	3	2	1	2	1	3	3	3	1	2	3	2

	Text Books									
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year						
1	Hand book of solid waste management	George Tchobanoglous, Frank Kreith	Mc Graw hill publications, New York.	2002						
2	Solid Waste Engineering	William A Worrell, Aarne Vesilind,	Cengage learning	2016						
3	Environmental Engineering	Howard S Peavy, Donald R Rowe, George Tchobanoglous	Mc Graw hill Education	Edition 7, 1985						

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Waste management Practices	John Pichtel	Taylor& Francis publishers	2015
2	Introduction to Environmental Engineering	David A. Cornwell and Mackenzie L. Davis	Mc Graw Hill International Edition	Edition 4, 2013
3	Environmental Science (Earth as a living plant)	Daniel B. Botkin and Edward A. Keller	John Wiley & Sons Inc.	IV Edition, 2003
4	Hand Book of Environmental Engineering	Robert A. Corbitt	Mc Graw hill publishing Company	1990

Video Links (NPTEL, SWAYAM)			
Module No.	Link ID		
1	https://nptel.ac.in/courses/105103205		
2	https://nptel.ac.in/courses/105103205		
3	https://nptel.ac.in/courses/105103205		
4	https://nptel.ac.in/courses/105106056		

SEMESTER S6
TRAFFIC ENGINEERING AND MANAGEMENT

Course Code	PECET637	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET502	Course Type	Theory

Course Objectives:

- 1. Impart in-depth knowledge pertinent to traffic flow theory, traffic management measures, capacity analysis and road safety
- 2. Enable designing of road intersections and traffic signals

Module	Syllabus Description	
No.		
1	Fundamental parameters- speed, density, volume, travel time, headway, spacing, time-space diagram, time mean speed, space mean speed and their relation. Fundamental diagrams of traffic flow. Single Regime models - Greenshields model, Greenberg logarithmic model. Multi-Regime models - Two and three regime linear models. Need and scope of traffic regulations- Motor Vehicle Act - Regulation of speed- Regulation of vehicles - Regulations concerning driver- General rules concerning traffic- parking regulations- Enforcement of regulations.	9
2	Scope of traffic management measures – restrictions to turning movements – one-way streets – tidal flow operations-Closing side streets – Exclusive bus lanes. Intersections: At-grade intersections- basic forms- conflict points -visibility triangle- design principles- Channelization. Grade separated intersection: Grade separated intersections without interchange, and with interchange- Three leg interchange, Four leg interchange and multileg interchange. Traffic	9

	Control Measures - Traffic Signs, Road Markings, Traffic control aids.	
	General awareness only.	
	Capacity and Level of service (LOS): Concept- Base capacity, Adjusted	
	capacity, LOS definition, Factors Affecting Capacity and LOS, Homogeneous	
	and heterogeneous traffic conditions- vehicle types - Concept of PCU.	
3	Capacity and LOS analysis -Single lane, Intermediate lane and two lane	9
	interurban roads- Base capacity and adjustment factors- Indo HCM (2017)	9
	Approach. Capacity and LOS analysis of Urban roads - Base conditions -	
	Adjustment factors- Indo HCM (2017) approach. Roundabouts- Geometric	
	layout, types- design elements.	
	Traffic Signals - Warrants- pre-timed and traffic actuated. Design of signal	
	timing at isolated intersections- Phase design- optimum cycle time (Webster's	
	approach), green splitting-pedestrian phase -phase diagrams, timing diagram.	
4	Traffic Safety: Road Safety Situation in India, Causes of road accidents -	
4	influence of road, vehicle, driver and environmental factors - Pedestrian	9
	Safety, Collection and statistical analysis of accident data, Collision and	
	condition diagram. Road safety audit- concept and need- organizations	
	involved-stages of road safety audit (brief description only)	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify the relationship among various traffic stream variables.	K2, K3
CO2	Apply traffic management measures and regulations so as to solve issues related to traffic flow in road network.	K2, K3
CO3	Identify the need for intersection control and design of various types.	K2, K3
CO4	Explain the concept of capacity and LOS and its estimation for various traffic facilities.	K2, K3
CO5	Analyse causes of road accidents and suggest preventive measures.	K2, K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	3	-	-	-	-	-	-
CO3	3	2	-	2	-	2	-	-	-	-	-	2
CO4	3	2	3	2	-	2	3	-	-	-	-	2
CO5	3	2	2	3	-	3	-	-	-	-	-	2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Traffic Engineering and Transport planning	Kadiyali L.R.	Khanna Publishers	2011		
2	Highway Engineering	Khanna S.K, Justo C.E.G. and A. Veeraragavan	Nem Chand & Bro	10 th , 2018		
3	Transport planning and Traffic Engineering,	CAO Flaherty	Elsevier	2006		
4	Traffic Engineering	Roess, R. R., McShane W R & Prassas E S	Prentice Hall of India	4 th , 2010		

	Reference Books					
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year		
1	Traffic Engineering	Pignataro L. J	Prentice Hall of India	1973		
2	Transportation Engineering: An Introduction	C. J. Khisty and B. K. Lall	Prentice Hall of India	2002		
3	Principles of Transportation Engineering	Chakroborty P. and Das A.	Prentice Hall of India	2003		
4	Traffic Flow Fundamentals	A. D. May	Prentice Hall of India	1990		
5	Highway Capacity Manual	-	Transportation Research Board, USA	2010		
6	Indian Highway Capacity Manual (Indo-HCM)	-	CSIR, New Delhi	2017		

	Video Links (NPTEL, SWAYAM)				
Module	Link ID				
No					
1	https://archive.nptel.ac.in/courses/105/105/105105215/				
2	https://archive.nptel.ac.in/courses/105/105/105105215/				
3	https://archive.nptel.ac.in/courses/105/105/105105215/				
4	https://archive.nptel.ac.in/courses/105/105/105105215/				

SEMESTER S6

ADVANCED FOUNDATION ENGINEERING

Course Code	PECET635	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET402 PBCET504	Course Type	Theory

Course Objectives:

- 1. To impart the students a comprehensive understanding of foundation design concept
- **2.** To enable students to acquire proper knowledge for performing the design and analysis of foundation in real life situation

Module	Syllabus Description	Contact
No.	·	Hours
1	Bearing capacity of shallow foundations-Review of technology-IS code formula for safe bearing capacity of shallow foundation. Numerical problems. Footings subjected to moments-effective width concept-Numerical problems. Allowable bearing pressure from N Value-Teng's equations for safe bearing capacity of strip, square and circular footings, Safe bearing pressure for a permissible settlement. Numerical problem- Footings on layered soil concept with Explanation.	9
2	Deep foundations- Geotechnical Design of Piles from SPT and CPT -values- number and spacing-Numerical Problems-Settlement of pile groups in clay- equivalent raft concept-Numerical problem. Settlement of pile groups in sand- Skempton's method-Meyerhof's Method-Numerical problem. Uplift capacity of single piles and group of piles in clay -Numerical problems.	9
3	Under reamed piles-ultimate load carrying capacity in sand and clay-design considerations as per IS. IS formula-single and double bulb -Numerical	9

		problems. Drilled piers (straight shafted and belled) in clay- Design	
		Considerations- Load Transfer Mechanism. Vertical Bearing Capacity and	
		uplift capacity of belled pier -	
		Numerical problems. Types of Sheet Pile Walls-Cantilever Sheet Pile Walls -	
		Cantilever sheet pile walls with cohesion less backfill-deflection diagram-	
		depth of embedment. Cantilever sheet pile walls with cohesive backfill-depth	
		of embedment. Numerical problem- Anchored sheet pile walls-free earth	
		support and fixed earth support analysis (concept only)-Rowe moment	
		reduction factor	
Ì		Behavior of vertical piles under lateral loading – Failure mechanisms of short	
		piles in cohesive and granular soils for restrained and unrestrained conditions,	
		given by (Broms). Failure mechanisms of long piles in sand and clay both free	
		headed and fixed headed given by Broms-Empirical Methods to Determine	
		Lateral Strength of Piles-IS 2911 and Brom's method. IS2911 method-concept	
		and assumptions made- Criteria for	
	4	classification of piles into short rigid piles or long elastic piles: Lateral load	0
	4	test on vertical piles. Details of Broms Method- Chart for estimating the	9
		resistance of short and long piles in clayey soils. Chart for estimating the	
		lateral deflection at ground level for piles in Clayey soils under working loads	
		given by Broms. Chart for estimating the ultimate lateral resistance of short	
		and long piles in sandy soils and Chart for estimating the lateral deflection at	
		ground level for piles in Clayey soils under working loads given by Broms.	
		Numerical problems using Brom's charts alone.	
ı			1

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation (Evaluate and Analyse): 20 marks Criteria for Evaluation(Evaluate and Analyse): 20 marks

Assignment

Students should Identify a real word requirement for a special foundation. Design and develop detailed drawing of it. Finally, a complete file with documents including basic requirements, soil exploration data, design specification, design procedure, drawings and concluding remarks.

Criteria for evaluation:

1. Problem Definition (K4 - 4 points)

a. Clearly defines the requirements and constrains.

2. Problem Analysis (K4 - 4 points)

a. Compare and justify the proposed schemes with evidence and logical reasoning.

3. Evaluate (K5 - 4 points)

- a. Thoroughly evaluate the proposed solutions.
- b. Compares trade-offs, advantages, and disadvantages.
- c. Considers feasibility, scalability, and practical implications.

4. Design and drawing (K6 - 8 points)

- a. Demonstrates proficiency in design.
- b. Demonstrates proficiency in creating drawings for technical requirements including approval.

Scoring:

- 1. Accomplished (4 points): Exceptional analysis, clear implementation, and depth of understanding.
- 2. Competent (3 points): Solid performance with minor areas for improvement.
- 3. Developing (2 points): Adequate effort but lacks depth or clarity.
- 4. Minimal (1 point): Incomplete or significantly flawed.

End Semester Examination Marks (ESE):

Part A	Part B	Total
• 2 Questions from each	2 questions will be given from each module, out of which	
module.	1 question should be answered. Each question can have a	
• Total of 8 Questions, each	maximum of 3 sub divisions. Each question carries 9	60
carrying 3 marks	marks.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain allowable soil pressure and safe bearing capacity, evaluate safe bearing capacity of shallow foundations by IS formula.	К3
CO2	Proportion and design pile foundations, evaluate settlement of pile groups, uplift capacity of single and group of piles in clay	K4
CO3	Apply the procedure for the deflection and ultimate lateral load capacity of vertical piles.	К3
CO4	Analyse the load carrying capacity of under reamed piles and load capacity and uplift resistance of belled piers. Analyse the depth of embedment for cantilever sheet pile walls in clay and sand,	K4
CO5	Evaluate the load carrying capacity of under reamed piles and load capacity and uplift resistance of belled piers.	K5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-
CO3	3	3	-	2	-	-	-	-	-	-	-	-
CO4	3	3	2	-	-	-	-	-	-	-	-	-
CO5	3	3	3	-	-	-	-	-	-	2	2	-

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Analysis and design of substructures	Swami Saran	Oxford & IBH publishing Co. Pvt. Ltd.	2013			
2	Foundation Engineering	P.C. Varghese	PHI Learning Private Limited	2012			
3	Principles of Geotechnical Engineering	Das B. M.	Cengage India Pvt. Ltd.	2010			
4	Basic and Applied Soil Mechanics	Ranjan G. and A. S. R. Rao.	New Age International	2002			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Geotechnical Engineering,	Arora K. R.	Standard Publishers.	2006.			
2	Soil Mechanics and Foundation Engineering	Purushothamaraj P.	Dorling Inversely (India) Pvt. Ltd.	2013			
3	Geotechnical Engineering: Principles and practices of Soil Mechanics and Foundation Engineering	Murthy V.N.S	New York: Marcel Dekker	2003			
4	Geotechnical Engineering	Arora K. R.	Standard Publishers	2006			

	Video Links (NPTEL, SWAYAM)					
Sl. No.	Sl. No. Link ID					
1	1 https://archive.nptel.ac.in/courses/105/105/105207/					

SEMESTER S6

CONSTRUCTION PROJECT MANAGEMENT

Course Code	PBCET604	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	4	ESE Marks	40
Credits	3:0:0:1	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	-	Course Type	Theory

Course Objectives:

- 1. Introduce students to the fundamentals of construction project management and planning.
- 2. Covers techniques for planning and scheduling construction projects, as well as methods for monitoring and controlling them.
- 3. Provides insights into the applications of Building Information Modelling (BIM) in construction.
- **4.** Ensure that students become proficient in construction project planning and management by combining theoretical concepts with practical exercises using various software tool.

Module No.	Syllabus Description	
1	Construction projects, life cycle of a project – phases in a project. Tendering: types of tenders, stages in tendering. Process of development of plans and schedules – work break-down structure, estimating durations. Types of Schedules – Construction schedule, Material schedule, labour schedule, equipment schedule, financial schedule. Techniques of planning – Bar charts, Mile Stone Charts. Network representation – Activity on Arrow (AoA) or Activity on Node (AoN) Diagram. Network analysis – Critical Path Method (CPM), Programme Evaluation and Review Technique (PERT) – concepts and problems.	9

	Precedence Diagramming Method – types of relationships – concept of lead	
	and lag. Concept only	
2	Handling resources on projects, resource constraints and conflicts, resource allocation and resource levelling. Concept only Time-Cost trade-off on construction projects – Classification of costs, compression of networks, cost optimization through the crashing of a network.	9
3	Updating project schedules. Project control, Schedule/time/progress control, periodic progress reports. Concept of Time-cost monitoring and control using S-curve, Earned value analysis – measures of performance.	9
4	Introduction to BIM Technology: Define BIM and BIM model, describe workflow in using BIM in the building lifecycle, Model-Based cost estimating, Perform Simulations, Apply BIM to reduce error and change orders in projects, Evaluate and communicate ideas related to the use of BIM in the building life cycle, BIM Benefits: Case Studies, Organizational Maturity and Dimensions, Construction Management and Planning using BIM.	9

Suggestion on Project Topics:

Project based learning (8 hrs)

Steps of Detailed Project Planning:

- 1. Develop basic drawings of a construction project (Preferably Residential/small commercial building; G+1 building maximum)-Use drafting software for developing plan
- 2. Approximate estimation of quantities and rates, development of BOQ for the project -Use spread sheet or similar software
- 3. Develop a Gantt chart/ Precedence Network of the project and identify the critical path and floats. (use suitable planning software)
- 4. Develop a resource schedule for the selected project
- 5. Submit the completed files as project planning report

(CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	2 questions will be given from each module, out of	
module.	which 1 question should be answered. Each question can	
• Total of 8 Questions,	have a maximum of 2 sub divisions. Each question	40
each carrying 2 marks	carries 6 marks.	
(8x2 =16 marks)	(4x6 = 24 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the procedure for planning and executing public works.	K1
CO2	Apply scheduling techniques in construction project planning	К3
CO3	Optimize resource requirements in construction projects.	К3
CO4	Apply earned value analysis for monitoring the schedule and cost performance of construction projects.	К3
CO5	Demonstrate the application of BIM in construction management and planning.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	1	-
CO2	3	3	-	-	2	-	-	1	-	-	2	-
CO3	3	3	-	-	3	-	-	1	-	-	2	-
CO4	3	3	-	-	3	-	-	1	-	-	3	-
CO5	3	3	-	-	3	-	-	1	-	-	-	-

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Construction Project Management Theory & Practice	Jha K. N	Pearson India Education Services Pvt. Ltd.	2nd edition, 2015					
2	Construction Management and Planning	Sengupta B. and Guha H.,	McGraw Hill	1995					
3	BIM and Construction Management: Proven Tools, Methods and Workflows.	Hardin B. and McCool D	John Wiley and Sons Inc.,	2015					

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Modern Construction Management	Harris F., McCaffer R., Baldwin A. and Edum- Fotwe F.,	Wiley-Blackwell	8th Edition, 2021				
2	Construction Engineering and Management	Sharma S. C. and Deodhar S. V.	Khanna Publishing	2019				
3	Construction Project Management: Planning, Scheduling and Controlling,	Chitkara, K. K.	Tata McGraw-Hill Education	3rd Edition, 2014				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	archive.nptel.ac.in/courses/105/104/105104161/					
2	archive.nptel.ac.in/courses/105/103/105103093/					

PBL Course Elements

L: Lecture	R: Pr	ulty Members	
(3 Hrs.)	Tutorial	Practical	Presentation
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)
Group discussion	Project Analysis	Data Collection	Evaluation
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for	Allotted
		Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

INTRODUCTION TO CONSTRUCTION ENGINEERING

Course Code	OECET611	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Identify the properties and applications of different construction materials
- 2. Understand the principles of concrete mix design and production
- 3. Learn various building systems and components
- 4. Comprehend the role of emerging trends and technology innovations in construction

Module No.	Syllabus Description	Contact Hours
1	Construction Materials Mortar – Types – properties – uses. Timber products – properties & uses of plywood, fibre board, particle board. Cement - Manufacturing, chemical composition, Tests on cement – specific gravity, standard consistency, initial and final setting time, fineness, soundness, compressive strength, IS specifications Aggregates – types, Gradation, importance of gradation, bulking of fine aggregate Iron and Steel – Reinforcing steel – types – specifications. Structural steel – specifications Admixtures, uses – mineral admixtures – fly ash and ground granulated blast furnace slag and chemical admixtures – plasticizers, super plasticizers,	Hours 9
	accelerators, retarders (brief discussion only)	
2	Concrete Technology Process of manufacturing concrete – batching, mixing, transportation, placing, compacting, finishing, curing Properties of fresh concrete: Workability, factors affecting workability, test on	9

		workability (slump test), segregation and bleeding (brief discussion)	
		Properties of hardened concrete: Strength, factors affecting strength, tests for	
		strength of concrete in compression, tension and flexure	
		Concrete quality control – statistical analysis of results – standard deviation –	
		acceptance criteria – mix proportioning (B.I.S method) – nominal mixes.	
		Building Construction	
		Preliminary considerations for shallow and deep foundations	
		Masonry – Types of stone masonry	
	2	Lintels and arches – types and construction details.	
	3	Tall Buildings – Framed building – steel and concrete frame – structural systems	9
		-erection of steel work-concrete framed construction- formwork - construction	
		and expansion. joints	
		Introduction to prefabricated construction – slip form construction	
		Construction Technology	
		Cost-effective construction - rapid wall construction, soil-cement block	
		masonry, voided slab technology, filler slab technology	
		Basic concept of prestressing – fundamental understanding of pre-tensioned and	
	4	post-tensioned construction	9
	4	Construction 3D printing (brief discussion only)	9
		Building failures – General reasons – classification – Causes of failures in RCC	
		and Steel structures, Failure due to Fire, Wind and Earthquakes.	
		Foundation failure – failures by alteration, improper maintenance, overloading.	
		Retrofitting of structural components - beams, columns and slabs	
1			1

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the characteristics and uses of common construction materials	K2
CO2	Design and specify concrete mixes for different applications	К3
CO3	Identify and explain various building systems and components	K2
CO4	Describe the impact of emerging trends and innovations on construction	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	1	2	-	-	-	-	3
CO2	3	-	-	-	-	1	2	-	-	-	-	3
CO3	3	-	-	-	-	1	2	-	-	-	-	3
CO4	3	-	-	-	1	1	2	_	-	-	1	3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Advanced Construction Technology	Roy Chudley, Roger Greeno	Prentice Hall	4 th Ed, 2006			
2	Architectural Design with SketchUp	Alexander C. Schreyer	John Wiley & Sons	3rd Ed, 2023			
3	Building materials & construction	Anil Kumar Mishra	S. Chand Publishers	1st Ed, 2018			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fundamentals of Building Construction: Materials and Methods	Edward Allen, Joseph Iano	Wiley Publishers	7 th , 2019				

Video Links (NPTEL, SWAYAM)						
Module No.	Link ID					
1	https://nptel.ac.in/courses/105102088					
2	https://archive.nptel.ac.in/courses/105/102/105102012/					

ENVIRONMENTAL LAWS AND POLICY

Course Code	OECET612	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To explain the role of law, policy and institutions in the conservation and management of natural resources as well as pollution control
- 2. To introduce the laws and policies both at the national and international level relating to environment
- 3. To equip the students with the skills needed for interpreting laws, policies and judicial decisions
- 4. To familiarise students in the concept of international environmental law

Module	Syllabus Description		
No.			
1	Basic Concepts in Environmental Law An introduction to the legal system; Constitution, Acts, Rules, Regulations; Indian Judiciary, Doctrine of precedents, judicial review, Writ petitions, PIL— liberalization of the rule of locus standi, Judicial activism. Introduction to environmental laws in India; Constitutional provisions, Stockholm conference; Bhopal gas tragedy; Rio conference. General principles in Environmental law: Precautionary principle; Polluter pays principle; Sustainable development; Public trust doctrine. Overview of legislations and basic concepts	9	
2	Forest, Wildlife and Biodiversity related laws Evolution and Jurisprudence of Forest and Wildlife laws; Colonial forest policies; Forest policies after independence 2 Statutory framework on Forests, Wildlife and Biodiversity: IFA, 1927; WLPA, 1972; FCA, 1980;	9	

	Biological Diversity Act, 2002; Forest Rights Act, 2006. Strategies for					
	conservation-Project Tiger, Elephant, Rhino, Modulew leopard.					
	Air, Water and Marine Laws					
	National Water Policy and some state policies Laws relating to prevention of					
	pollution, access and management of water and institutional mechanism:					
3	Water Act, 1974; Water Cess Act, 1977, EPA, 1986. Pollution Control Boards	9				
	Ground water and law Judicial remedies and procedures Marine laws of India;					
	Coastal zone regulations. Legal framework on Air pollution: Air Act,1981;					
	EPA, 1986					
	Hazardous Substances and Activities Legal framework					
	EPA and rules made thereunder; PLI Act, 199 Principles of strict and absolute					
	liability;					
	International Environmental law					
4	An introduction to international law; sources of international law; law of	9				
	treaties; signature, ratification Evolution of international environmental law:					
	Customary principles; Common but differentiated responsibility, Polluter					
	pays.					

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Familiar with the laws, policies and institutions in the field of environment	K1
CO2	Acquire the skills needed for interpreting laws, policies and judicial decisions in a holistic perspective	K2
CO3	Acquire the ability to evaluate the role of law and policy in conservation and management of natural resources and prevention of pollution	К2
CO4	Familiar with the concept of international environmental law	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	2	2	1	-	1	-	2
CO2	2	-	_	-	-	2	2	1	-	1	-	2
CO3	3	-	_	-	-	2	2	1	-	2	-	2
CO4	2	-	-	-	-	2	2	1	-	1	-	2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Environmental Law and Policy in India	Divan S. and Rosencranz A.	Oxford, New Delhi	3 rd , 2022			
2	Environmental Law in India	Leelakrishnan P.	Lexis Nexis, India	6 th , 2022			
3	International Law and the Environment	Birnie P.	Oxford	3 rd , 2009			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Hand Book on Environmental Law- Forest Laws, Wildlife Laws and the Environment; Vols. I, II and III	Upadhyay S. and Upadhyay V	Lexis Nexis- Butterworths-India, New Delhi.	2002			
2	Principles of International Environmental Law,	Sands P	Cambridge	2003			

	Video Links (NPTEL, SWAYAM)					
Module	Link ID					
No.						
1	https://onlinecourses.swayam2.ac.in/cec20_ge12/preview					

DISASTER MANAGEMENT

Course Code	OECET613	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. To introduce the concept of disasters, their causes and their mitigation and management

Module No.	Syllabus Description	
1	Hazards and disasters: Introduction to key concepts and terminology: hazard, disasters and types of classifications, vulnerability, exposure, risk, crisis, emergency, capacity, resilience, Carbon footprint. Effect of subsystems of earth. Extent and nature of natural hazards, implications of climate change: Earth quakes, Volcanoes, Floods. Coastal disasters- Storm surges, Tsunamis, mitigation methods.	9
2	Landslides, Causes and prediction, Soil and soil degradation, erosion and Desertification, Forest fires, their mitigation methods.	9
3	Impacts and assessment: Risk Management and Assessment and Disaster Management cycle. SWOT Analysis- basic concepts, uses, limitations and advantages. Disaster management plan and reports, participation of community in disaster management.	9
4	Hazard and disaster management plans for floods, storm surges, landslides, earthquakes, forest fires: pre-disaster phase, actual disaster phase, post-disaster phase	9

Relief and Amenities, Relief camps, organization, individual and community	
participation, camp layout, food requirement, water needs, sanitation, security,	
information administration. Technology in disaster management.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	Assignment/	Internal	Internal	
Attendance	Assignment/	Examination-1	Examination- 2	Total
	Microproject	(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	otal of 8 Questions, each of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain interaction between subsystems of earth that give rise to hazards and their potential for disasters	К2
CO2	Explain the evolving concepts and thoughts of management of hazards and disasters	K2
CO3	Apply the knowledge to find the causes behind natural disasters and evaluate their magnitude and impacts	К3
CO4	Develop management plans for hazards and disasters, and understand the roles of agencies involved	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	1
CO2	3	-	-	-	-	-	-	-	-	-	-	2
CO3	3	3	-	-	-	-	2	-	-	-	-	2
CO4	3	-	3	-	-	-	-	-	-	-	-	1

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Disaster Management	Mrinalini Pandey	Wiley	2 nd edition					
2	Disaster Risk Reduction in South Asia	Ariyabandu, M. and Sahni P.	Prentice-Hall (India)	2003					
3	Environmental Geology - Ecology, Resource and Hazard Management	Valdiya, K.S.	McGraw-Hill Education	2013					
4	Disaster Management: Global Problems and Local Solutions	Shaw, R and Krishnamurthy, RR	Springer, Amsterdam	2010					
5	Disaster Management - A Disaster Manager's Handbook	Nick Carter. W.,	Asian Development Bank, Philippines.	1991					
6	Disaster management	Gupta, H.K.	Universities Press (India) Ltd.	2003					
7	Natural and Anthropogenic Disasters- Vulnerability, Preparedness and Mitigation	Jha, M.K.	Springer, Amsterdam.	2010					

Reference Books									
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year					
1	Geological Hazards: Their assessment, avoidance and mitigation	Bell, F.G.	E & FN SPON Routledge, London.	1999					
2	Natural Disasters	Alexander, D.,	Research Press, New Delhi	1993					
3	Handbook of Disaster and Emergency Management	Khorram-Manesh	Kompendiet (Gothenburg).	2017					
4	Disaster Management in India Policies, Institutions, Practices	Rajendra Kumar Pandey	Routledge	2023					

	Video Links (NPTEL, SWAYAM)					
	Link ID					
1	https://nptel.ac.in/courses/105104183					
2	https://onlinecourses.swayam2.ac.in/cec19_hs20/preview					

ENVIRONMENTAL IMPACT ASSESSMENT

Course Code	OECET614	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To study the various types of environmental pollution and their impacts.
- 2. To study the process of environmental impact assessment and impact analysis methodologies.

Module	Syllabus Description						
No.	Synabus Description						
	Introduction						
	Pollution and pollutants - general aspects, scale of impact-Global, local						
	pollutants						
1	History of EIA - Global and Indian scenario, Need for EIA, EIA 2006 key	9					
1	features, General overview of Draft EIA 2020	,					
	EIA procedure in India, Public participation – Significance & steps						
	Environment management plan						
	Role of an Environmental Engineer						
	Impact analysis- Adhoc, checklists, matrix methods, overlay analysis,						
	Fault Tree Analysis method & Event Tree Analysis method						
	EIA case studies						
2	Water Pollution	9					
	Point and Non-point Source of Pollution, Major Pollutants of Water, Physical,						
	chemical and biological characteristics of water, Water borne diseases, Water						
	Quality standards (IS 10500-2012)						
	Solid Waste						
3	Classification and sources of Solid Waste, Characteristics of Solid Waste,	9					
	E-waste, & Radioactive wastes - Types, management/disposal						

	Hazardous waste -waste identification process and characteristics				
	Solid Waste Management Rules 2016				
	Land/Soil Pollution				
	Effects of urbanization on land degradation, Impact of Modern Agriculture on				
	Soil, pesticide pollution, Effect on Environment				
	Air Pollution				
	Classification of Pollution and Pollutants, Primary and Secondary Pollutants,				
	Criteria Pollutants and their impacts on environment, human health, National				
4	Ambient Air Quality Standards by CPCB	9			
4	Noise Pollution	9			
	Sources of Noise, Effects of Noise, measurement of noise, Equivalent sound				
	pressure level, Control measures -Noise pollution (Regulation and control)				
	Rule 2000				

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate the process, need and significance of EIA	K2
CO2	Predict and analyse the possible environmental impact assessment on various projects	К3
CO3	Apply assessment methodologies for evaluating environmental impact assessment	К3
CO4	Identify the significant sources of pollution from any upcoming or existing project and their impacts on biotic and abiotic elements in the environment	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	2	1	3	3	3	1	2	3	2
CO2	3	3	2	2	2	3	3	3	1	2	3	2
CO3	3	3	2	2	2	3	3	3	1	2	3	2
CO4	3	3	2	2	2	3	3	3	1	2	3	2

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Introduction to EIA	John Glasson, Riki Therivel & S Andrew Chadwick	University College London Press Limited	2005						
2	Environmental Impact Assessment	Larry W Canter	McGraw Hill Inc., New York	1996						
3	Waste Water Engineering	B.C. Punmia	Laxmi Publications Pvt. Ltd	1998						
4	Sewage Treatment & Disposal and Waste water Engineering	P.N. Modi	Standard Book House	15 th , 2008						

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	EIA Analysis Hand Book	Rau G J and Wooten C. D.	McGraw Hill	1979			
2	Introduction to Environmental Engineering	Mackenzie L Davis	McGraw hill Education	2013			
3	Environmental Engineering	Peavy H S, Rowe, D.R. Tchobanaglous	Mc Graw Hill Education	1985			
4	Standard Handbook of Environmental Engineering	Robert A Corbett	McGraw Hill	1999			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/124107160					
2	https://nptel.ac.in/courses/124107160					
3	https://nptel.ac.in/courses/124107160					
4	https://nptel.ac.in/courses/124107160					

STRUCTURAL GEOLOGY

Course Code	OECET 615	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understand the evolution of earth from the deformed rocks and structures.
- 2. Identify areas of mineral, oil and gas deposits.
- 3. Get an idea about the structural instabilities which can lead to natural hazards

Module No.	Syllabus Description				
1	Introduction to Structural Geology; Forces causing deformation in Earth's lithosphere; Concept of rock deformation: Stress and Strain in rocks; Strain ellipses of different types and their geological significance; Rheology of rocks; Concept of dip and strike; Outcrop patterns.	9			
2	Foliation and lineation- Description and origin of foliations, axial plane cleavage and its tectonic significance; Description and origin of lineation and relationship with the major structures; Neotectonics-Introduction; Neo tectonic activity in Kerala.	9			
3	Folds- Fold morphology; Geometric and genetic classification of folds; Introduction to the mechanics of folding: Buckling, Bending, Flexural slip and flow folding; Importance of structures in mineral, oil and gas deposits	9			
4	Fractures and faults: Geometric and genetic classification of fractures and faults; Effects of faulting on the outcrops; Geologic/geomorphic criteria for recognition of faults and fault plane solutions; Lineaments- Introduction; Major lineaments in Kerala and its possible implications.	9			

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	A agi an man 4/	Internal	Internal	
Attendance	Assignment/ Microproject	Examination-1 (Written)	Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand about stress, strain and the deformation of rocks and the causes of deformation of rocks	К2
CO2	Evaluate the basic concepts in tectonics with respect to the geology of Kerala	K5
CO3	Identify the structures with probable mineral, oil and gas deposits	K1
CO4	Acquire the ability to describe and classify brittle and ductile structures, including faults and folds	K4
CO5	Anticipate the possibility of natural hazards	К6

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	1	-	-	-	-	-	-	3
CO2	3	3	-	2	-	1	-	-	1	-	-	3
CO3	3	3	1	2	1		1	1	1	-	-	3
CO4	3	3		2	-	-	-	-	-	-	-	3
CO5	3	3	1	2	1	1	-	1	1	-	-	3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Structural Geology	Marland P Billings	Pearson education	2016				
2	Geology of Kerala	K Soman	Geological Society of India	2023				
3	An Introduction to Structural Geology	A.K. Jain	Geological Society of India	2019				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Structural Geology of Rocks and Regions	George H. Davis, Stephen J. Reynolds, Charles F. Kluth	Wiley	3 rd , 2011				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc19_ce47/preview						

APPLIED EARTH SYSTEMS

Course Code	OECET616	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Appreciation of earth as a system of interrelated components
- 2. Understanding mechanisms that give rise to oceanographic and atmospheric phenomena
- **3.** Comprehension of processes that result in characteristic land features in different climatic regimes

Module	Syllabus Description	
No.		
1	Fundamental concepts of equilibrium. Geomorphic agents and processes. Basic concept of Earth as a system and its component sub systems. Climate Change vis-a-vis the interrelationships of the subsystems- Green House Effect and Global warming, basic ideas about their causes and effects.	9
2	Weathering- relevance, influence of and on earth systems, types and controlling factors. Soil- formation and controls, soil profile, soil erosion and conservation methods. Fluvial processes-hydrological cycle, fluvial erosion, transportation and deposition, fluvial landforms. Stages of stream development; Drainage patterns.	9
3	Wagner's ideas of continental drift, Plate Tectonics- seafloor spreading. Plate boundaries and their features, mechanisms of plate movements Basics of oceanography: coastal upwelling and downwelling. Outlines of ocean floor topography, basic outlines of origin and circulation of deep sea surface currents (Atlantic and Pacific Oceans)	9

4	Basics of atmosphere and atmospheric processes: Structure and composition of the atmosphere. Heat budget, factors affecting solar radiation. Fundamental concepts of precipitation, global wind patterns. General weather systems of India, - Monsoon system, cyclone and jet stream	9
---	--	---

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	Assignment/ Microproject	Internal	Internal		
Attendance		Examination-1 (Written)	Examination- 2 (Written)	Total	
		(written)	(written)		
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the concept of earth as a system of interrelated components and associated exogenic/endogenic processes.	K2
CO2	Appraise geological agents and their respective erosion, transportation and deposition regimes and landforms formed.	К5
CO3	Evaluate/investigate the significance of Plate tectonics theory to explain the geodynamic features and processes of earth's surface.	К5
CO4	Develop an understanding of oceanographic and atmospheric regimes and their sway on other subsystems and process thereof.	К6
CO5	Understand implications of human interaction with the Earth system.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	2	-	3	3	2	-	-	-	3
CO2	3	3	-	3	-	3	3	-	1	-	-	3
CO3	3	3	-	3	-	3	3	-	-	-	-	3
CO4	3	3	2	3	-	3	3	-	-	-	-	3
CO5	3	3	-	3	-	3	3	3	-	-	-	3

	Text Books						
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year			
1	General Climatology	Critchfield H. J.	Prentice Hall, New Delhi	1983			
2	Applied Hydrogeology	Fetter C. W.	CBS New Delhi	1990			
3	Physical geology: Earth Revealed	Carlson D.H., Plummer C. C. and Mc Greary D.	McGraw Hill, New York,	2006			
4	Oceanography–An Introduction to the Planet Oceanus	Pinet P R	West Publishing Co.,	1992			
5	Environmental Geology: Ecology, Resource and Hazard Management	Valdiya K. S.	McGraw-Hill Education (India) Private Limited, New Delhi	2013			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Climatology and oceanography	D. S. Lal	Allahabad Sharda Pustak Bhawan	2001				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc20_ce33/preview						
2	https://onlinecourses.nptel.ac.in/noc20_ce33/preview						
3	https://onlinecourses.nptel.ac.in/noc20_ce33/preview						
4	https://onlinecourses.nptel.ac.in/noc20_ce33/preview						

TRANSPORTATION ENGINEERING LAB

Course Code	PCCEL607	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PECET637	Course Type	Lab

Course Objectives:

- 1. To enable students to assess the quality of various pavement materials and their suitability in highway construction
- 2. To make student familiar with mix design and do functional evaluation of pavements

Experiments						
Test on Soil						
California Bearing Ratio Test						
Test on Coarse Aggregate						
Specific Gravity and Water Absorption Test						
Aggregate Impact Test						
Los Angeles Abrasion Test						
Aggregate Crushing Value Test						
Shape Test: Angularity number						
Combined flakiness and elongation index						
Stripping value of road aggregates.						
Test on Bitumen						
Determination of grade of bitumen based on viscosity						
Softening point						
Ductility of bitumen (Demonstration using Aged bitumen)						
Flash and fire point of bitumen						
Design of Bituminous Mix						
Design of bituminous mix by Marshall method of mix design						
Functional Evaluation of Pavement						
Use of MERLIN apparatus to determine road roughness						

Any 12 experiments mandatory

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/	Conduct of experiment/	Result with valid			
Preparatory	Execution of work/	inference/	Viva	Dagand	Total
work/Design/	troubleshooting/	Quality of	voce	Record	Total
Algorithm	Programming	Output			
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

Course Outcome		Bloom's Knowledge Level (KL)
CO1	Determine CBR value of the given sample of soil. Comment on its suitability as a subgrade material	К3
CO2	Assess the suitability of aggregates as a pavement construction material based on specifications given relevant codes/guidelines	К3
СОЗ	Assess the suitability of bitumen as a pavement construction material based on specifications given relevant codes/guidelines	К3
CO4	Determine optimum binder content of the given bituminous mix by Marshall method of mix design	К3
CO5	Comment on the condition of road surface by determining the IRI value of the given road surface using MERLIN and comparing with standard values.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	2	-	-	2	-	-	2	2	1	-
CO2	3	-	2	-	-	2	-	-	2	2	1	-
CO3	3	-	2	-	-	2	-	-	2	2	1	-
CO4	3		2	-	-	2	-	-	2	2	1	-
CO5	3	3	2	1	-	2	-	-	2	2	1	-

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Highway Materials and Pavement Testing	Khanna, S.K., Justo, C.E.G. and Veeraragavan, A	Nem Chand & Bros., Roorkee	2013		
2	Highway Material Testing and Quality Control	Venkatappa Rao, K. Ramachandra Rao, Kausik Pahari and D.V. Bhavanna Rao	I.K. International.	2019		
3	Principles and Practices of Highway Engineering	Kadiyali, L. R. and Lal, N.B.	Khanna Publishers.	2013		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Principles of Highway Engineering and Traffic Analysis, 7th Edition	Fred L. Mannering and Scott S. Washburn	Wiley	2019		

Video Links (NPTEL, SWAYAM)					
No.	No. Link ID				
1	https://ts-nitk.vlabs.ac.in/				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation
 of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

ENVIRONMENTAL ENGINEERING LAB

Course Code	PCCEL609	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. Perform the experiments to determine water and waste water quality
- 2. Understand the quality of water, waste water, Industrial water

Expt. No.	Experiments
1	Determination of pH and Turbidity
2	Determination of Conductivity and Total dissolved solids
3	Determination of Alkalinity & Acidity
4	Determination of Chlorides
5	Determination and Estimation of total solids, organic solids and inorganic solids
6	Determination of iron
7	Determination of Dissolved Oxygen
8	Determination of Nitrogen
9	Determination of total Phosphorous
10	Determination of B.O.D
11	Determination of C.O.D
12	Determination of Optimum coagulant dose
13	Determination of Chlorine demand
14	Determination of Sulphate
15	Determination of Hardness
16	Presumptive coli form test

Any 12 experiments mandatory

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/	Conduct of experiment/	Result with			
Preparatory	Execution of work/	valid inference/	Viva	Record	Total
work/Design/	troubleshooting/	Quality of	voce	Record	1 Otai
Algorithm	Programming	Output			
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the equipment used to test water quality	К3
CO2	Perform the experiments for water quality & estimate the quality	К3
CO3	Compare the water quality standards with prescribed standards set by the local governments	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	2	-	-	2	2	-	2
CO2	3	2	-	-	-	2	-	-	2	2	-	2
CO3	3	2	-	-	-	2	-	-	2	2	-	2

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Standard Methods for Analysis of water and Waste Water	E.W. Rice, R.B. Baird, A.D. Eaton	АРНА	2017

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Chemistry for Environmental Engineering	Sawyer and Mc. Carty	McGraw Hill	2017

	Video Links (NPTEL, SWAYAM)				
No.	Link ID				
1	https://ee1-nitk.vlabs.ac.in/List%20of%20experiments.html				
2	https://ee2-nitk.vlabs.ac.in/List%20of%20experiments.html				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

• Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.

 Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 7 CIVIL ENGINEERING

STRUCTURAL DYNAMICS

Course Code	PECET741	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET403	Course Type	Theory

Course Objectives:

1. To provide the basic concepts of structural dynamics and the theoretical background to perform dynamic analysis of structures.

Module	Syllabus Description	
No.		
	Introduction – Classification of dynamic loads – essential characteristics of	
	a dynamic problem - methods of discretization- single degree of freedom	
	systems – basic components of a dynamic system.	
1	Formulation of equation of motion – Newton's 2nd law and D' Alembert's	
1	principle; influence of gravitational forces – generalized SDOF systems.	9
	Solution of the equation of motion – undamped free vibration – damped	
	free vibration- critically damped under damped and over damped SDOF	
	systems, Logarithmic decrement.	
	Response to harmonic loading – steady state and transient states steady sate	
	amplitude, Dynamic magnification factor, force transmissibility and	
	vibration isolation.	
2	Response to periodic loading - Fourier series representation of periodic	0
	loads in time domain. Response of SDOF systems.	9
	Response to impulse loading – half-sine, rectangular and triangular	
	pulses;	

3	Response to general loading — Duhamel Integral, damped and undamped systems. Multi degree of freedom systems — Lumped mass systems, shear building frame, Equation of motion. Free vibration analysis: Natural frequencies and mode shapes, orthogonality of normal modes.	9
4	Approximate methods: Rayleigh's method Dunkarley's method, Stodola's method. Distributed mass (continuous) systems – differential equation of motion – Axial vibration of rods. Flexural vibration of beams, natural frequencies and mode shapes of simply supported beam. Evaluation of frequencies and mode shapes of cantilever beam and fixed beam (formulation only).	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	Assignment/	Internal	Internal	
Attendance	Microproject	Examination-1 (Written)	Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Formulate appropriate SDOF models of simple structural systems under dynamic loads apply them to the solution of engineering	К3
	problems.	
CO2	Analyze and interpret the dynamic response of SDOF systems for various dynamic inputs.	К3
CO3	Develop mathematical models for MDOF shear building models and estimate the natural frequencies and vibration modes for the same.	К3
CO4	Understand the dynamic behaviour of continuous parameter systems.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3										2
CO5	3	3										2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Dynamics of Structures	Anil K. Chopra	Pearson Education	2020			
2	Structural Dynamics: Theory and Computation	Mario Paz	Springer	5 th Ed 2007			
3	Structural Dynamics: Vibrations & Systems	Mukhopadhyay M.,	ANE Books	2008			

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Dynamics of Structures	Clough R.W,	CBS	2 nd Ed
1		J.Penzien		2015
2	Vibration of Structures	J.W. Smith	Chapman and Hall,	1988
2			London.	1900
	Vibration Analysis and	Alphose Zingoni	CRC Press	
3	Structural Dynamics for Civil			2018
	Engineers: Essentials and			2018
	Group-Theoretic Formulations			

	Video Links (NPTEL, SWAYAM)				
Sl No.	Link ID				
1	https://archive.nptel.ac.in/courses/105/106/105106151/				
2	https://archive.nptel.ac.in/courses/105/101/105101006/				
3	https://archive.nptel.ac.in/courses/105/101/105101209/				

FORMWORK ENGINEERING

Course Code	PECET742	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

- 1. Understand the principles of formwork design and construction.
- 2. Learn about different formwork materials and systems.
- **3.** Apply safety standards in formwork operations.
- **4.** Develop skills in planning and managing formwork operations

Module	Syllabus Description	Contact
No.	Introduction to Formwork and Materials Introduction to Formwork Engineering, Definition and importance of formwork, Historical development of formwork systems, Formwork Materials: Timber, steel, aluminum, and plastic formwork, Properties and selection criteria, Advantages and disadvantages of different materials, Modern Formwork Systems, Modular, prefabricated, and	Hours 9
	reusable formwork, Advancements in formwork materials and technology, Environmental Considerations, Sustainable formwork practices, Reducing waste and recycling materials, Environmental impact assessment.	
2	Design and Construction of Formwork Systems Basic Principles of Formwork Design, Load considerations and calculations Structural analysis of formwork systems, Formwork for Different Concrete Structures, Foundations, walls, columns, beams, and slabs,	9

3	Special considerations for high-rise buildings and bridges, Formwork for architectural concrete, Assembling and Dismantling Formwork, Erection and alignment, Shoring and reshoring practices. Safety and Quality Control in Formwork Formwork Safety, Safety regulations and standards, Common hazards and risk management, Inspection and maintenance of formwork systems, Formwork Quality Control, Ensuring accuracy and quality in construction, Testing and inspection methods, Quality assurance protocols, Case Studies and Practical Applications, Analysis of real-world formwork projects Lessons learned from successful and failed systems, Guest lectures from industry professionals.	9
4	Project Planning, Management, and Special Conditions Project Planning and Management, Estimating formwork costs and labor, Scheduling and sequencing operations, Project management tools and techniques, Formwork in Special Conditions, Extreme weather conditions, Underwater formwork, Unusual shapes and complex geometries, Formwork for Repair and Rehabilitation, Techniques for concrete repair works, Strengthening and retrofitting existing structures, Case studies of rehabilitation projects	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	Assignment/	Internal	Internal	Total
Attendance	Assignment/ Microproject	Examination-1 (Written)	Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify appropriate materials for the form work construction	К3
CO2	Apply the principles of structural analysis and design in formwork design	К3
CO3	Demonstrate the safety and quality control requirements in formwork	K2
CO4	Organize from work construction considering the planning concepts	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2				3					
CO2	3	3	3									
CO3	3											3
CO4	3	3	3								3	

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books										
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year							
1	Formwork for Concrete	M.K. Hurd	American concrete inst	1979							
2	Concrete Formwork Systems	Awad S. Hanna	CRC Press	2019							
3	Formwork for Concrete Structures	Garold D. Oberlender and Robert L. Peurifoy	McGraw Hill	4 th edition 2010							

Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Formwork A Practical Guide	Geoffrey Lee, Peter McAdam	CRC Press	2014					

	Video Links (NPTEL, SWAYAM)							
Sl No.	Link ID							
1	https://archive.nptel.ac.in/courses/105/104/105104030/							

ENVIRONMENTAL GEOTECHNOLOGY

Course Code	PECET743	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET402	Course Type	Theory

Course Objectives:

- 1. The provide information regarding soil -water- contaminant interaction process
- 2. To provide aspects of waste containment facilities design and remediation of contaminated sites

Module	Syllabus Description	Contact				
No.	Synabus Description					
1	Scope of geoenvironmental engineering - multiphase behaviour of soil - importance of soil physics, soil chemistry, hydrogeology, biological process-Geochemical Attenuation-Quantification of attenuation capacities-Laboratory evaluation, sequential batch-contact testing and Column percolation testing. Soil-water-contaminant interaction and concepts of double layer -Change in properties of soil due to change in environment;- Atterberg limits, shear strength, volume change, and permeability.	9				
2	Contaminant transport in soil -Transport process- Advection, Diffusion, Dispersion and sorption-Fick's equation Characteristics of Municipal solid waste, Physical, Chemical and geotechnical characteristics-Identification of Hazardous and Non-Hazardous waste waste dump and its impact on environment-Regulatory requirement -Solid waste management rules (brief introduction only) –MOEF&CC Guidelines-duties of waste generator and local authority -Evolution of waste containment facilities and disposal practices – Site selection based on environmental impact assessment	9				

3	Landfill Types-Landfill layout and capacity, Planning of landfills-Liner and Cover system, its components and its functions-natural clay liner- compacted clay liner selection of soil for barrier layer- Methods to find permeability of clay barrier layer -Primary and secondary leachate collection and removal systems - Gas Management, Gas extraction systems-passive and active system Closure and post closure monitoring system (brief introduction)	9
4	Application of geosynthetics in landfills-Geotextile, geomembrane, geosynthetic clay liners, Geocomposites. methodology of construction, testing and design aspects Contaminated site- Soil exploration at contaminated site (brief introduction)-risk assessment of contaminated site - remediation methods for soil and groundwater –selection and planning of remediation methods—in-situ/exitu remediation, bioremediation, thermal remediation, pump and treat method, phyto remediation and electrokinetic remediation Stability of landfill (brief introduction)	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B				
• 2 Questions from each	Each question carries 9 marks.				
module.	Two questions will be given from each module, out				
• Total of 8 Questions, each	of which 1 question should be answered.	(0			
carrying 3 marks	Each question can have a maximum of 3 sub	60			
	divisions.				
(8x3 =24marks)	(4x9 = 36 marks)				

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome							
		Level (KL)						
CO1	Understand Soil -water- contaminant interaction process and	K1						
CO2	CO2 Study Contaminant transport in soil							
CO3	CO3 Design aspects of waste containment facilities							
CO4	Plan Remediation of contaminated sites	K1						

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					1	1					
CO2	3	2					2					
CO3	3		2				2					
CO4	3			2		1	1					

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year			
1	Soil engineering in relation to environment	Ayyar TSR	LBS centre for Science and Technology, Trivandrum	2000			
2	Solid waste Management and Engineered Landfills	Dr. G V Rao and Dr. R S Sasidhar	Saimaster Geoenvironmental Services Pvt. Ltd. Publication	2009			
3	Geotechnical Practice for Waste Disposal.	Daniel, D.E.).	Chapman, and Hall, London.	1993			
4	Geoenvironmental Engineering	Hari D. Sharma, Krishna R. Reddy	Publisher: John Wiley & Sons Inc.	2004			
5	Designing with Geosynthetics.	Koerner, R.M.	Fifth Edition. Prentice Hall, New Jersey	2005.			

	Reference Books							
Sl. No	Title of the Book	tle of the Book Name of the Author/s Name of the Publisher		Edition and Year				
1	Geoenvironmental Engineering: Principles and Applications,	Reddi L.N and Inyang HI	Marcel Dekker Inc Publication	2000				
2	Waste Disposal in Engineering landfills,	Manoj Datta	Narosa Publishing House, NewDelhi	1997				
3	Geoenvironmental Engineering: Contaminated Soils, Pollutant Fate, Mitigation	R. N. Yong	Lewis Publication.	2000				

	Video Links (NPTEL, SWAYAM)				
Sl No.	Link ID				
1	https://archive.nptel.ac.in/courses/105/101/105101196/				

AIRPORT PLANNING AND DESIGN

Course Code	PECET744	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:3:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET502	Course Type	Theory

Course Objectives:

- 1. To impart knowledge about planning different components of airport.
- 2. To enable the students to understand the factors affecting the design of airports.

Module	Syllabus Description	Contact
No.	Syllabus Description	Hours
	General - History, development, policy of air transport, aircrafts,	
	aerodromes, air transport authorities, air transport activities, air craft	
	characteristics, airport classifications as per ICAO. Regional planning-	
1	concepts and advantages, location and planning of airport as per ICAO and	
1	F.A.A. recommendations, airport Elements -airfield, terminal area,	9
	obstructions, approach zone, zoning laws, airport capacity, size and site	
	selection, estimation of future air traffic, development of new airport,	
	requirements of an ideal airport layout.	
	Runway design- Wind rose and orientation of runway, wind coverage and	
	crosswind component, factors affecting runway length, basic runway length,	
	and corrections to runway length, runway configurations. threshold limits	
2	cross section of runway. Taxiway design - Controlling factors, layout, exit	
2	taxiway, location and geometrics, holding apron, turn around facility. Aprons	9
	-locations, size, gate positions, aircraft parking configurations and parking	
	systems, hanger-site selection, planning and design considerations, Fuel	
	storage area, blast pads. wind direction indicator.	
	Landside Planning: Terminal area elements and requirements, Termina	
3	concepts & types, Passenger requirements at terminal building, space	9
	requirements-design peak hour demand, standards, location planning	

	concepts of other landside elements. Airport Geometrics: Runway and	
	taxiway geometric elements: Length, width, Safety Area, Grade & grade	
	changes, Sight distance, Turning radius. Grading and Drainage: Airport	
	grading-importance - operations, airport drainage aims, functions, special	
	characteristics, basic requirements, surface and subsurface drainage systems.	
	Visual Aids: Objectives, Runway Marking, Taxiway Marking, Shoulder	
	marking, Apron marking. Airport Lighting: Beacon, Obstruction lighting,	
	Approach lighting, Runway lighting. Taxiway Lighting, Airfield Signage	
4	system: Runway and taxiway signages, Signing standards. Air traffic	9
4	control: Air traffic control-objectives, rules, control system, control	9
	network-visual aids-landing information system.	
	Air Travel demand forecast: Macro & Micro Analysis (Intro only), Air field	
	capacity: factors, (Intro only).	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the different components of airport and aircrafts.	K1
CO2	Apply principles of airport planning in design of Runways and Taxiways.	К3
CO3	Apply the principles in planning the landside features of an airport.	K2
CO4	Apply the standards for geometric design of runways and taxiways.	К3
CO5	Describe the various visual aids applied on airports.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3							1				2
CO2	3	2				2		1				2
CO3	3	2				2		1				2
CO4	3	3	3			2		1				2
CO5	3	2				2		1				2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book Name of the Author/s Khanna S K, Arora M G and Jain S S		Name of the Publisher	Edition and Year 6 th Edition, 2012				
1			Nemchand and Brothers					
2	Airport Engineering	Rangwala S., C., and Dalal K., B	Charotar Publishing House Pvt. Ltd.	16 th Edition, 2016				
3	Planning and Design of Airports	Horonjeff, R., McKelvey, F. X., Sproule, W. J., and Young S. B.	McGraw-Hill Professional	5 th Edition, 2010				

	Reference Books							
Sl. No	Title of the Book	Name of the Publisher	Edition and Year					
1	Airport Systems: Planning, Design, and Management	Richard de Neufville	McGraw-Hill Professional	2 nd Edition, 2013				
2	Transportation Engineering: Railways, Airports, Docks & Harbours	Srinivasa Kumar R	Universities Press	2014				
3	Planning, Design and Development of 21st Century Airports	Norman J. Ashford, Saleh Mumayiz and Paul H. Wright	John Wiley &Sons	4 th Edition, 2011				
4	Airport planning and management	Young, S.B. and Wells., A.T.	McGraw-Hill Education	6th ed., 2011				

	Video Links (NPTEL, SWAYAM)					
Sl No.	Sl No. Link ID					
1	https://archive.nptel.ac.in/courses/105/107/105107123/					

HIGHWAY MATERIALS AND DESIGN

Course Code	PECET746	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:3:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET502	Course Type	Theory

Course Objectives:

- 1. Understand the characteristics of various highway materials, tests on highway materials, and design of bituminous mixes,
- **2.** Analyse the stresses on pavements and to design major types of pavements using different approaches so that it has better performance and longer service life

Module No.	Syllabus Description				
1	Pavements and materials: Desirable properties and testing of materials: Introduction to highway pavements-Flexible and rigid pavements-component parts - Functions and significance of layers. Pavement Materials – Desirable properties, principle and procedure of tests for assessment of subgrade soil, road aggregates and bitumen.	Hours 9			
2	Bituminous mixes requirements and design: Materials for durable pavements- Artificial aggregates, types of binders, -emulsions, cut backs and modified binders-grading, characteristics and uses. Aging of bitumen and aging tests. Requirements of bituminous mixes, Specifications for bituminous pavement layers. Grading of aggregates, design of bituminous mixes using Marshall Method.	9			
3	Design of flexible pavements: Introduction to analysis and design of flexible pavements: Factors affecting design and performance of pavements, ESWL of multiple wheels, Repeated loads and EWL factors, stresses and	9			

	deflections in homogeneous masses and layered system. Design of flexible	
	pavements: Empirical, semi - empirical and theoretical approaches for	
	flexible pavement design- Design of pavement using CBR method, Triaxial	
	method, Burmister's two-layer theory and IRC method.	
	Design of rigid pavements: Introduction to analysis and design of rigid	
	pavements: Types of stresses -wheel load stress, warping stress, frictional	
4	stress and critical combination of stresses, Westergaard's Analysis. Joints in	g
7	cement concrete pavements: Types of joints and functions, Joint spacings,	
	design of tie bar and dowel bar using IRC method.	
	Design of slab thickness- IRC methods of design of cement concrete slab.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total	
• 2 Questions from each	Each question carries 9 marks.		
module.	Two questions will be given from each module, out		
• Total of 8 Questions, each	of which 1 question should be answered.		
carrying 3 marks	• Each question can have a maximum of 3 sub	60	
	divisions.		
(8x3 =24marks)	(4x9 = 36 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify suitable materials for different types of pavements and Interpret material test results with respect to field conditions and standards.	К3
CO2	Apply the pavement material properties to analysis of pavements and Evaluate material properties in design of pavement mixes.	К3
CO3	Determine the stresses and design flexible pavements with better performance and longer service life	К3
CO4	Determine the stresses and design rigid pavements with better performance and longer service life and Design the reinforcements in cement concrete pavements	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3		3	3	3		3		2
CO2	3	3	3	3		3	3	3		3		2
CO3	3	3	3	3		3	3	3	3	3		1
CO4	3	3	3	3		3	2	3				

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Highway Engineering	SK Khanna , CEO Justo, A. Veeraragavan	Nem Chand & Bros	Revised 10th Edition - 2017				
2	Principles and Practices of	Kadiyali, L. R. and N.B	Khanna Publishers,	Seventh				
2	Highway Engineering	Lal,	2013	edition, 2017				
3	Principles of Transportation and Highway Engineering	Rao G. V.	Tata McGrawHill	1996				
4	Principles of Pavement Design	Yoder E J and Witezak M W	John Wiley and sons	2nd Edition 2011				
5	IRC: 37-2018, Guidelines for the Design of Flexible Pavements							
6	IRC: 58 - 2015, Guidelines for the Design of Rigid Pavements							
7	MoRTH specifications							

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Pavement Analysis and Design	Yang H. Huang	Prentice Hall	2004
2	Pavement Engineering – Principles and Practice	Rajib B. Mallick and Tahar El-Korchi	CRC Press (Taylor and Francis Group)	

Video Links (NPTEL, SWAYAM)							
SL. No.	SL. No. Link ID						
1	https://nptel.ac.in/courses/105106221						
2	https://nptel.ac.in/courses/105104098						

RIVER ENGINEERING

Course Code	PECET747	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET501	Course Type	Theory

Course Objectives:

- **1.** To understand river morphology, classification systems, channel behaviour, and sediment transport processes.
- 2. To understand the critical aspects in the design of river engineering structures
- 3. To understand river mechanics to facilitate mathematical/ hydraulic modelling.

Module No.	Syllabus Description			
110.		Hours		
	Introduction – river morphology- classification of rivers - systems of stream			
	classification. Behaviour of rivers, channel geometry, effects of long			
	contraction.			
1	Super critical flow, Stream profiles and bed material bank erosion,	9		
	degradation, aggradation.			
	River basin management plans, inter basin river water transfers and river			
	water disputes.			
	River training works - classification of river training works-objectives -			
2	methods - planning - design parameters-embankment as river training			
Z	works- design of guide banks- artificial cut off- pitched island - river	9		
	diversions - examples of river training works.	,		
	Properties of the sediment settling velocity, - incipient motion critical			
	tractive force, empirical equations- scour criteria, Shield's analysis -White's			
3	analysis Regimes of flow and resistance; Bed form mechanics design of	9		
	stable channels – Garret's method Bed load transport and its estimation.			

	Suspended load transport, Diffusion in turbulent flow, differential equation	
4	for suspension of sediment, estimation of suspended load, Sediment samplers	9
	– bed load samplers – suspended load samplers.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	Assignment/	Internal	Internal	
Attendance	Assignment/ Microproject	Examination-1	Examination- 2	Total
		(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	To understand river morphology, classification, channel behaviour, and sediment transport processes.	K2
CO2	To understand the critical aspects in the design of river engineering structures	К3
CO3	To understand river mechanics to facilitate mathematical/ hydraulic modelling.	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1									
CO2	3	3	2									
CO3	3	3	3									

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Mechanics of Sediment Transportation and Alluvial Stream Problems	R. J. Garde, K. G. Ranga Raju	New Age International	3 rd Ed, 2000			
2	Flow in Open Channels	Subramanya K	Tata McGraw Hill	4, 2015			
3	Hydraulics of Sediment Transport	Walter Hans Graf	Water Resources Pubns	1987			
4	River Engineering	Margaret S. Peterson,	Prentice Hall	1986			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fluvial Processes in River Engineering	Howard Chang	John Wiley & Sons	1988				
2	An introduction to fluvial hydraulics	Serge Leliavsky	Dover Publications	1966				

	Video Links (NPTEL, SWAYAM)						
Sl. No.	Link ID						
1	https://archive.nptel.ac.in/courses/105/103/105103204/						

PAVEMENT DESIGN AND CONSTRUCTION

Course Code	PECET745	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET502 and PCCEL607	Course Type	Theory

Course Objectives:

- 1. This course introduces students to the fundamental concepts of Pavements, materials used for pavement construction, and types.
- **2.** Students will learn to analyse and design a pavement and also to evaluate the condition of a pavement.

Module	Syllabus Description	Contact
No.	Syllabus Description	
1	Pavement: Functions and characteristics- types of pavement: flexible pavement, rigid pavement, comparison - Different layers of flexible and rigid pavement, functions and characteristics of layers. Pavement materials: Properties of aggregates, bitumen and subgrade soil. Requirements and tests on aggregates, bitumen and subgrade soil (CBR value). Types of bitumen and uses, bituminous emulsion and cutback. Methods of grading of bitumen.	9
2	Bituminous pavement types: Penetration layer system and premixed system- Types and specification of materials used. Special types of bituminous layers (stone mastic asphalt and mastic asphalt). Mix design: physical and volumetric properties of bituminous mix, Marshall method of mix design, Super pave mix design.	9

	Construction of Flexible Pavement- Construction steps, equipment used	
	and quality control checks of subgrade, granular sub base (GSB),WBM,	
	WMM, Bituminous Macadam and Bituminous Concrete layers of flexible	
3	pavement.	9
	Construction of Cement concrete pavement: material characterization,	
	preparation of subgrade and base, presetting reinforcement in joints and	
	PCC slab construction. Methods of construction of concrete pavements.	
	Introduction to Pavement Evaluation- Structural and functional	
	requirements of pavements. Functional evaluation of pavements- pavement	
4	condition survey, pavement distress rating indices,	9
	Structural evaluation of flexible pavements by Benkelman Beam Deflection	
	technique.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Assignment

Find a real-world pavement requirement. Collect and analyse required data and design the pavement.

- 1. Defining objectives (K4 4 points).
- 2. Laboratory experiments or field data collection (K4 4 points)
- 3. Analysis of data (K5 4 points)
- 4. *Verification with standard specification or rating (K5 4 points)*
- 5. Conclusions (K4-2 points, K5-2 points)
 - a. Summarizes findings and insights. (K4)
 - b. Reflects critical thinking and informed decision-making. (K5

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	2 questions will be given from each module, out of	
module.	which 1 question should be answered. Each question	
• Total of 8 Questions,	can have a maximum of 3 sub divisions. Each	60
each carrying 3 marks	question carries 9 marks.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the different types of pavements and the materials used.	К3
CO2	Design a typical bituminous pavement using standard methods.	К3
CO3	Apply on field the basic construction practises of flexible and rigid pavements.	К3
CO4	Understand the concept of pavement evalution as per standard procedures.	К3
CO5	Analyse & evaluate the design procedure, construction and conduct a structural & functional evaluation of a typical pavement.	K4, K5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2			2		3				3
CO2	3	3				2		3				3
CO3	3	3	3			2		3				3
CO4	3	3				2		3				3
CO5	3	3				2		3				3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Highway Engineering	Khanna, S.K, Justo E.G, .A Veeraragavan	Khanna Publishers	10th Edition, 2018				
2	Principles of Highway Engineering	Kadiyali, L. R	Khanna Publishers	2001				
3	Pavement Engineering	Rajib B. Mallick and TaharEl-Korchi	CRC press	2009				
4	Principles of Transportation and Highway Engineering	Rao G. V	Tata McGrawHill	1996				
5	Bituminous Road Construction in India	Prithvi Singh Khandhal	PHI Learning	2019				

		Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Pavement Management for Airports, Roads and Parking lots	Shahin M.Y	Chapman & Hall,	2005			
2	2 MoRTH 2001, Manual for construction and supervision of Bituminous works						
3	IRC: 37-2018: Guidelines for the	Design of Flexible Pavemen	nts				

	Video Links (NPTEL, SWAYAM)				
Sl.No.	Link ID				
1	https://nptel.ac.in/courses/105104098				
2	https://www.civil.iitb.ac.in/~vmtom/nptel/401_lnTse/web/web.html				
3	https://archive.nptel.ac.in/courses/105/107/105107219/				
4	https://nptelvideos.com/video.php?id=2058				

GROUND WATER ENGINEERING

Course Code	PECET751	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET501, PCCET402	Course Type	Theory

Course Objectives:

1. To expose the students to the fundamental concepts of groundwater hydrology and its engineering applications.

Module	Module No. Syllabus Description	
No.		
	Vertical distribution of groundwater- Types of geologic formations, aquifer	
	and their types, Properties of aquifer related to storage and transmissivity of	
	water, Darcy's law (Review)	
1	Steady unidirectional flow- steady flow in a homogenous aquifer- aquifer	
1	with recharge- flow into infiltration galleries. (Problems from unidirectional	9
	flow)	
	Evaluation of aquifer parameters by Theis, Jacob's and Chow's method.	
	(Problems from evaluation of aquifer parameters)	
	Modelling of ground water flow- governing equations of ground water flow	
	and boundary conditions (basic ideas only), solution of partial differential	
	equation of ground water flow for 1D steady ground water flow in	
2	homogenous aquifers (confined and unconfined) using finite difference	
	method (uniform mesh interval only)	9
	Partial differential equation governing unsteady groundwater flow-	
	unsteady radial flow towards well.	
	Well hydraulics -Well flow near aquifer boundaries- Image well system.	
2	Method of images- Practical cases	
3	(Problems from method of images).	9
	Method of constructing shallow wells- Method of constructing shallow wells	

	-cable tool method, rotary method and reverse rotary method-well completion-design of gravel packed well-well development-different	
	methods, well rehabilitation.	
4	Surface investigation of groundwater- different methods-electrical resistivity method, seismic refraction method- determination of aquifer thickness of horizontal aquifers (Problems from resistivity method, seismic refraction) Groundwater Contamination, Quality of Ground Water- Graphical Representations. Reducing Groundwater Contamination. Sea water intrusion- Ghyben-Herzberg equation, sea water-fresh water interface, length of intrusion, upconing, preventive measures.(Problems from sea water intrusion)	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

		Assignment/ Microproject	Internal	Internal	
	Attendance		Examination-1	Examination- 2	Total
			(Written)	(Written)	
İ	5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Determine the aquifer parameters using different methods.	К3
CO2	Perform numerical modelling of ground water system.	К3
CO3	Describe the procedure of well construction and estimate the well draw down curve.	К3
CO4	Determine aquifer thickness using different geophysical methods	К3
CO5	Estimate the extent of ground water pollution and assess the quality	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3					1	3	3			
CO2	3	3					1	3	3			
CO3	3	2					1	3	2			
CO4	3	3					1	3	3			
CO5	3	3					1	3	3			

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Ground Water Hydrology	D.K. Todd	Wiley International	1995			
2	Groundwater.	H.M. Raghunath	New Age International	2007			
3	Numerical Ground Water Hydrology	A.K. Rastogi	Penram International	2007			

	Reference Books							
Sl. No Title of the Book		Name of the Author/s	Name of the Publisher	Edition and Year				
1	Ground Water Assessment, Development and Management	K. Karanth	Tata McGraw Hill	2017				
2	Ground Water Manual : A Water Resources Technical Publication	USDI, Bureau of Reclamation	Scientific Publishers - USDI	2017				
3	Ground Water and tube wells	S.P Garg	Oxford &IBH Publishing Company	1993				
4	Ground Water Hydrology	Herman Bouwer	MC Graw Hill Kogakusha Ltd	2000				

	Video Links (NPTEL, SWAYAM)
Sl No.	Link ID
1	https://onlinecourses.nptel.ac.in/noc24_ce83/preview
2	https://nptel.ac.in/courses/105103026

SUSTAINABLE CONSTRUCTION PRACTICES

Course Code	PECET752	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To know the importance of sustainable use of natural resources and energy.
- 2. To understand the principles of effective energy and resources management in buildings.
- 3. To bring awareness of the basic criteria in the green building rating systems.

Module No.	Syllabus Description		
1	Introduction to sustainable practices: Building life cycle, resource use in the built environment, major environmental issues, three dimensions of sustainability, environment, economy and social aspects, construction ecology and principles of green engineering. Indoor Environmental Quality: Day lighting, air ventilation, exhaust systems, low VOC paints, materials & adhesives, building acoustics. Codes related to green buildings: NBC, ECBC, ASHRAE, UPC, etc.	9	
2	Energy Efficiency: Environmental impact of building constructions, Concepts of embodied energy, operational energy and life cycle energy. Methods to reduce operational energy: Energy efficient building envelopes, Solar Heat Gain Coefficient, U-Values for facade materials, efficient lighting technologies, energy efficient and BEE rated appliances for heating and air-conditioning systems in buildings, zero ozone depleting potential (ODP) materials, wind and solar energy harvesting, energy metering and monitoring, concept of NET ZERO buildings.	9	

3	Water conservation and efficiency: Rainwater harvesting methods for roof & non-roof, reducing landscape water demand by proper irrigation systems, water efficient plumbing systems, water metering, waste water treatment, recycle and reuse systems. Waste Management: Handling of construction & demolition waste materials, separation of household waste, handling e-waste, on-site and off-site organic waste management	9
4	Introduction to Green Buildings: Definition of green buildings, definition of sustainability, typical features of green buildings, benefits of green buildings towards sustainable development. Green building rating systems – GRIHA, IGBC and LEED, overview of the criteria as per these rating systems, Case studies.	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the methodologies for sustainability and maintain indoor environmental quality	К3
CO2	Describe energy efficiency methods used in green building practices.	К3
CO3	Adopt various water efficiency criteria and waste management methods	К3
CO4	Understand the principles and practices of green buildings	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					3	3					3
CO2	3					3	3					3
CO3	3					3	3					3
CO4	3					3	3					3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Non-Conventional Energy Resource	G. D. Rai	Khanna Publishers	1988		
2	Sustainable Construction and Design	Regina Leffers	Pearson / Prentice Hall, USA	2009		
3	Sustainable Construction Practices	Er. Chirag K Baxi and Dr. Snehal Abhyankar	Nexus stories publication	2023		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Green Building Fundamentals: Practical Guide to Understanding and Applying Fundamental Sustainable Construction Practices and the Leed System	Mike Montoya	Pearson	2 nd Ed 2010		
2	Sustainable Practices in the Built Environment	Craig Langston	CRC Press	2008		
3	Sustainable Building Design Mar	nual, Vol.1 and 2, TERI, 2004		1		
4	GRIHA version 2015, GRIHA rating system, Green Rating for Integrated Habitat Assessment					

	Video Links (NPTEL, SWAYAM)					
Module	Module Link ID					
No.	Lilik ID					
1	http://acl.digimat.in/nptel/courses/video/105102195/105102195.html					

ADVANCED GEOTECHNICAL INVESTIGATION

Course Code	PECET753	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Geotechnical Engineering -1 (PCCET402)	Course Type	Theory

Course Objectives:

- 1. To impart in-depth knowledge about the various methods of geotechnical investigation and the field tests to be conducted in different situations
- **2.** To give the students a clear idea about how a geotechnical investigation programme is to be planned and executed
- 3. To help the students to take proper engineering decisions in practical situations
- **4.** To understand the functions and applications of geosynthetics

Module No.	Syllabus Description	Contact Hours
1	Planning an Investigation Programme Geotechnical Investigation – Necessity, Scope and Objectives Planning of a sub-surface exploration program -Factors to be considered Reconnaissance, preliminary and detailed investigation. I.S guidelines for deciding the number, size, spacing and depth of boreholes Exploration techniques Methods of exploration- open pits, trenches, shafts, boreholes. Methods of boring – Auger boring, wash boring, percussion drilling, rotary drilling Sampling Soil Sampling- disturbed and undisturbed soil samples- representative and non-	Hours 9

	Sounding Methods	
	Standard Penetration Test- procedure, Factors influencing the SPT results and	
	precautions to obtain reliable results- corrections to be applied to observed N	
	values- correlations of N value with various engineering and index properties of	
	soils-Field study from sites-Field visit and analysis of data	
2	Static cone penetration test-procedure-merits/drawbacks. Correlation of static	9
	CPT results with properties	
	Dynamic Cone penetration test-Procedure-merits/drawbacks-Critical comparison	
	of SPT, Static CPT and dynamic CPT	
	Plate load test -Procedure, uses, limitations-Design of foundation from the	
	analysis of data	
	Field Tests	
	Geophysical methods -Seismic refraction method- procedure, use, limitations.	
3	Electrical resistivity method-Electrical profiling and electrical sounding-	9
3	procedure, uses, limitations	9
	Field tests – Pressure meter Test procedure, uses -limitations, correlations.	
	Pile load tests- Procedure- analysis of results of data	
	Sampling, Report & Geosynthetics	
	Soil Sampling- disturbed and undisturbed soil samples- representative and non-	
	representative samples, chunk and tube samples, Area ratio clearance, outside	
	clearance-recovery ratio, Handling and transportation of sample, Types of	
	samplers-Thin walled sampler, Piston sampler-Split spoon sampler. Methods for	
4	collection of sand samples from beneath the water table	9
-	Soil Investigation report	
	Presentation of soil exploration data – Bore log and soil profile.	
	Geosynthetics	
	Geosynthetics- Functions and applications from case studies – any field visit -	
	Pavements, Embankments, Railways, Erosion control from Kerala state.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
		Level (KL)			
CO1	The students will be able to understand the procedure, applicability and limitations of various methods of geotechnical investigation	K2			
CO2	The students will be able to make judgements and take appropriate decisions related to geotechnical investigations	K4			
CO3	The students will be able to understand the procedure and applications of penetration tests and geophysical tests for the exploration of the soil profile	К3			
CO4	The students will be able to choose the right soil sampling technique, analyse the dependability of samples collected and understand the soil investigation report	K4			
CO5	The students will be able to understand the functions and field applications of Geosynthetics from case studies from Kerala State	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2	2		2						3
CO2	3	2	2	2		2						3
CO3	3					3						3
CO4	3	2	2	2		2						3
CO5	3					2						3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Basic and applied soil mechanics	Gopal Ranjan and Rao A.S.R	New Age International (P) Limited, New Delhi	5 th edition 2024						
2	Geotechnical Engineering	Venkataramaih	Universities Press (India) Limited, Hyderabad	6th edition 2018						
3	Geotechnical Ground Investigation	Myint Win Bo	World Scientific Publishing Company	2022						

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Geotechnical Engineering Investigation Handbook	Hunt R.E. (2005)	, Mc GrawHill, New York	Second Edition 2005						
2	Principles of Geotechnical Engineering, Seventh Edition, Cengage Learning Inc, Stamford, USA	Braja M Das (2010)	Cengage Learning Inc, Stamford, USA	Seventh Edition (2010)						
3	Soil Mechanics & Foundation Engineering	Purushothama Raj P	Pearson Education India.	(2008)						

	Video Links (NPTEL, SWAYAM)						
	Link ID						
1	https://nptel.ac.in/courses/105105039						
2	https://nptel.ac.in/courses/105103182						

SEMESTER S7

RAILWAY, PORT AND HARBOR ENGINEERING

Course Code	PECET754	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET502	Course Type	Theory

Course Objectives:

1. To understand the components and geometric design of railway tracks, construction of railway track, operational and control systems in functioning of the entire rail system.

Module No.	Syllabus Description		
	Role of Railways in the development of a Nation- Development of railways		
	in India-Track Alignment- Basic requirements- Factors in selection of		
	suitable alignment-Surveys for track alignment- Permanent way and		
	Railway track components- Functions of various components- Rails,		
	Sleepers, Ballast, - Rails - types of rails, rail sections- defects in rails, creep		
1	of rails, theories- Measurement of creep- Prevention of creep. Rail fixtures		
	and fastenings, rail joints and welding of rails, Sleepers – types, spacing	9	
	and density, Ballast - types, advantages and disadvantages, Subgrade -		
	Functions- Material and its improvement (brief description only)- Concept		
	of Gauges-Selection of Gauge-Uniformity of gauge. Coning of wheels-		
	Theory of coning- advantages and disadvantages.		
	Geometric design of track: gradients, grade compensation, speed of trains		
	on curves, super elevation, cant deficiency, negative super elevation, curves,		
	types (brief description), necessity of providing transition curve, length of		
2	transition curve, widening on curves. Points and crossings-Necessity -		
	Turnout- components- Crossings- Components- Design features of turnout-	9	
	Types of Track Junctions-Construction of Railway Track- Earthwork		
	and consolidation- Plate laying- Laying of ballast.		

3	Water Transportation: Advantages and disadvantages. Harbours-Classification, requirements and characteristics of good harbour, and principles of harbour planning, site selection- Layout of harbour-Shape of harbour, harbour depth, Ship characteristics. Effects of natural phenomena on marine structures- Tides, Wind, Water waves Littoral drift. Marine Structure- General design aspects, Breakwaters - function, types, general design principles, construction methods, Wharves, Quays, Jetties, Piers, Pier heads, Dolphin, Fenders, Mooring Accessories.	9
4	Navigational Aids- Necessity, Types of navigation aids, Requirement of signals, Fixed and floating navigation aid- Docking and Repair Facilities-wet dock, classification-different types-design considerations- operation of lock gates and passage- Dry dock- Graving dry dock- design aspects-floating dry dock- design aspects- Port Facilities- Port building facilities, Transit sheds, Warehouses, Cargo handling facility, Services for shipping terminals, Inland port facilities planning.	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

		Bloom's				
	Course Outcome					
		Level (KL)				
	Identify factors affecting alignment of railway track for a given terrain					
CO1	and to explain the component parts of railway tracks, its functions, and	К3				
	materials of making					
CO2	Carry out geometric design of railway track and to explain the	К3				
	construction procedure of railway tracks					
CO3	Explain the basic principles, site selection characteristics and lay out of	K2				
(03	ports and harbours and the basics of docks.	K2				
CO4	Understand the concepts of various structures on harbours and	K2				
C04	navigational aids for communication.	IXZ				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2		3	3	2	1			3
CO2	3	2	2	2		3	3	2	1			3
CO3	3	2	2	2		3	3	2				3
CO4	3	2	2	2		3	3	2				3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year					
1	Railway Track Engineering,	Mundrey J. S,	Tata McGraw Hill	5th edition 2017					
2	Harbour. Dock & Tunnel Engineering,	Srinivasan,R.,	Charotar Publishing House,	28e, 2016					
3	Railway Engineering.	Rangawala, S.C.	Charotor Publishing House	27th edition 2017					
4	A course in Docks and Harbour Engineering,	Bindra. S.P.,	Dhanpat Rai& Sons	January 2012					

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Railway Engineering	Chandra, S. and Agarwal, M.M.	Oxford University Press, New Delhi	Second edition 2013
2	Railway Engineering.	Saxena, S. C and Arora, S. P,	Dhanpat Rai & Sons,	7e, 2015
3	Dock and Harbour Engineering	H P Oza and G H Oza,	Charotar Publishing House	8th Edition 2017

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	http://acl.digimat.in/nptel/courses/video/105107123/105107123.html				
2	http://acl.digimat.in/nptel/courses/video/105107123/105107123.html				
3	http://www.digimat.in/nptel/courses/video/114106025/114106025.html				
4	http://www.digimat.in/nptel/courses/video/114106025/114106025.html				

AIR AND NOISE POLLUTION CONTROL ENGINEERING

Course Code	PECET756	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:3:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To understand the various air pollutants, its sources, monitoring methods, control methods and regulations
- 2. To familiarise the concept of noise pollution and its control

Module	Syllabus Description	Contact
No.		
	Air pollutants, Sources, classification, Combustion Processes and pollutant	
1	emission, Effects on Health, vegetation, materials and atmosphere, Reactions	
1	of pollutants in the atmosphere and their effects, Smoke, smog and ozone	7
	layer disturbance, Greenhouse effect.	
	Air sampling and pollution measurement methods, principles and instruments,	
2	ambient air quality and emission standards, Air pollution indices, Air Act,	
	legislation and regulations	
	Control principles, Removal of gaseous pollutants by adsorption, absorption,	
	reaction and other methods. Particulate emission control, settling chambers,	
3	cyclone separation, Wet collectors, fabric filters, electrostatic precipitators and	9
	other removal methods like absorption, adsorption, precipitation etc.	
	Biological air pollution control technologies, Indoor air quality	
	Noise pollution: Basics of acoustics and specification of sound; sound power,	
4	sound intensity and sound pressure levels; plane, point and line sources,	
7	multiple sources; outdoor and indoor noise propagation; psychoacoustics and	11
	noise criteria, effects of noise on health, annoyance rating schemes; special	

noise	environme	nts: Iı	ıfrasoı	ınd, ultra	sound,	impulsive sound	and	sonic boom;	
noise	standards	and	limit	values;	noise	instrumentation	and	monitoring	
procedure. Noise indices. Noise control methods									

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	Assignment/	Internal	Internal	
Attendance	Assignment/ Microproject	Examination-1	Examination- 2	Total
	1 3	(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand sources of air pollution, air pollution problems, and Demonstrate a detailed knowledge of study the effect of meteorological parameters in the dispersion of air pollutants	К3
CO2	Analyze Environment legislation and regulations for air and noise pollution	К3
СОЗ	Evaluate efficiency of various air pollution control devices used for particulate removal	К3
CO4	Design, operate and control the devices used for noise emission control	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					2	2					
CO2	3					2	2					
CO3	3					2	1					
CO4	3					3	2					

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Environmental Pollution Control Engineering	C. S. Rao	Wiley Eastern Limited	2000		
2	Air pollution	M. N. Rao, H. V. N. Rao	Tata McGraw Hill Pvt. Ltd, New Delhi	1993		
3	Noise Pollution	G.K. Nagi, M.K. Dhillon, G.S. Dhaliwa	Commonwealth Publishers,	1999		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Sewage Disposal and Air Pollution Engineering	S.K. Garg	Khanna publishers	2024		
2	Environmental pollution analysis	S.M. Khopkar	New Age International Publications	2020		

	Video Links (NPTEL, SWAYAM)				
Sl.No.	Link ID				
1	https://archive.nptel.ac.in/courses/105/107/105107213/				
2	https://onlinecourses.nptel.ac.in/noc22_me52/preview				

FINITE ELEMENT METHOD

Course Code	PECET757	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET403	Course Type	Theory

Course Objectives:

1. This course provides the fundamental concepts of finite element method and its applications in structural engineering. As a natural development from the matrix analysis of structures, the student is encouraged to appreciate the versatility of this method across various domains, and also as the basis of many structural analysis software. This course introduces the basic mathematical concepts of the method and its application to simple analysis problems.

Module No.	Syllabus Description	Contact Hours
1	General Introduction –introduction to boundary value problems – approximate numerical solutions for solving differential equations – least square method – collocation method – Galerkin method – introduction to finite element method- advantages and disadvantages.	9
2	Brief review of matrix methods – Direct stiffness method – truss and beam element – Coordinate transformation –global assembly –Estimation of element forces. Interpolation and shape functions- polynomial approximations for 1D and 2D elements using Lagrange polynomials – CST, LST and bilinear rectangular elements	9
3	Formulation techniques – Variational approach and weighted residual approach – formulation of element equations for 1D bar element, 1D beam element and CST element. Isoparametric, sub-parametric and superparametric elements	9
4	Development of stiffness matrix for bar element and beam element -	

Introduction to higher order elements - introduction to axisymmetric	9
elements - Numerical Integration - Gauss quadrature. Discussion of	
modelling and analysis using recent commercial finite element software	
packages	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	A	Internal	Internal	
Attendance	Assignment/ Microproject	Examination-1 (Written)	Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	• Total of 8 Questions, each of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the basic features of boundary value problems and methods to solve them	K2
CO2	Get familiar with the basic element types and shape functions so as to identify and choose suitable elements to solve a particular problem.	К3
СОЗ	Understand the fundamental concept of the finite element method and develop the ability to generate the governing FE equations for systems governed by partial differential equations	К3
CO4	Understand the concepts of isoparametric elements and apply it for problems in structural engineering	К3
CO5	Apply numerical integration procedures as a tool to solve mathematical models in FEM	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1								
CO2	3	3	2	1								
CO3	3	3	1	1								
CO4	3	3	1									
CO5	3	3	1	1								

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Elementary Finite element method	Desai C.S.	Prentice Hall of India	1979			
2	Introduction to Finite Elements in Engineering	Chandrupatla T.R. and Belegundu A.D.	Cambridge University Press	5 th Ed 2021			
3	Concepts and Applications of Finite Element Analysis	Cook R.D.	John Wiley	2001			

	Reference Books						
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year			
1	Finite Element Procedures in Engineering Analysis	Bathe K.J.	Prentice Hall of India	1995			
2	Finite Element Analysis in Engineering Design	Rajasekaran S	Wheeler Pub.	2006			
3	Finite Element Analysis Theory and programming	Krishnamoorthy C.S.	Tata McGraw Hill	2017			
4	Fundamental Finite Element Analysis and Applications with Mathematics and Matlab computations	Bhatti, Asghar	Wiley	2012			
5	Finite element method	Zienkiewicz O C and Taylor R W	Elsevier Butterworth- Heinemann, UK	2007			

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID				
1	1 https://onlinecourses.nptel.ac.in/noc22_me43/preview				
2	https://archive.nptel.ac.in/courses/105/106/105106051/				

DESIGN OF HYDRAULIC STRUCTURES

Course Code	PECET755	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. This course introduces the fundamental hydraulic design concepts of different hydraulic structures
- 2. This course equips the students to perform the hydraulic design of minor irrigation structures such as cross drainage works; canal falls and regulators.
- 3. This course enables the student to develop/prepare the drawings of minor irrigation structures.

Module	Syllabus Description	Contact Hours
No.		
	Diversion head works- layout and functions of components, Weir and	
	barrage- Causes of failure of weirs on permeable soils - Bligh's theory and	
	Khosla's theory. Design of vertical drop weir. Design of impervious floor of	
1	hydraulic structures by Khosla's theory	9
	Cross drainage works-Types, selection of suitable type, Type of aqueducts.	
	Regulation Works - Canal falls-necessity, classification. Canal regulators-	
	Regulator cum road bridge- Head regulators and cross regulators.	
	Hydraulic design and Drawing of the following hydraulic structures: 1.	
2	Tank sluice 2. Canal Fall (Trapezoidal Notch type) 3. Syphon Aqueduct	9
	(Type III) 4. Syphon Well Drop5. Canal Regulator (Using Khosla's Theory	
	Dams-Types, Gravity dam - selection of site- forces acting - stability	
3	analysis and modes of failure - Principal and shear stresses Problems -	9
3	Elementary profile -limiting height of gravity dams high and low dams-	y
	Practical profiles, Functions of various components shafts, keys, water stops,	

	and different types of galleries, Grouting. Instrumentation in dams (Concept	
	only)	
	Earth dams-types, causes of failure and design criteria, Arch dams- thin	
4	cylinder theory; Spillways-types-Ogee spillway profile; Energy dissipation-	0
4	stilling basins-Indian standard Type I and Type II (description only) Arch	,
	dams-types, methods for design (list only)-Thin cylinder theory	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Assignment

- 1. Preparation of spread sheet for the design of of hydraulic structures mentioned in the second module
- 2. Prepare the design and drawings hydraulic structures mentioned in the second module in A2 Sheet.
- 3. Identify any practical requirement for a hydraulic structure and complete its design.

Criteria for evaluation:

- 1. Defining objectives (K4 4 points).
- 2. field data collection (K4 4 points)
- 3. Analysis of data (K5 4 points)
- 4. Verification with standard specification or rating (K5 4 points)
- 5. Final design (K4-2 points, K5-2 points)
 - a. Summarizes findings and insights. (K4)
 - b. Reflects critical thinking and informed decision-making. (K5)

Scoring:

- 1. Accomplished (4 points): Exceptional analysis, clear implementation, and depth of understanding.
- 2. Competent (3 points): Solid performance with minor areas for improvement.
- 3. Developing (2 points): Adequate effort but lacks depth or clarity.
- 4. Minimal (1 point): Incomplete or significantly flawed.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions. (Detailed drawings not expected and regular answer book will be provided)

Part A	Part B	Total
2 Questions from each	2 questions will be given from each module, out of	
module.	which 1 question should be answered. Each	
• Total of 8 Questions,	question can have a maximum of 3 sub divisions.	60
each carrying 3 marks	Each question carries 9 marks.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

		Bloom's
	Course Outcome	Knowledge
		Level (KL)
CO1	Elucidate the causes of failure, principles of design of different	К3
	components of hydraulic structures	
CO2	Perform the hydraulic design of existing minor irrigation structures	К3
	such as cross drainage works, canal falls, cross regulator by group	
	activity	
CO3	Prepare the scaled drawings of different minor irrigation structures	К3
CO4	Analyse the designs principles and features of dams and perform the	K4/K5
	stability analysis of gravity dams	
CO5	Apply the design criteria of earthen dam and arch dams	K4, K5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		2	2		3		2		3
CO2	3	3	3	3	2	2		3	3	2		3
CO3	3	3	3		2	2		3	3	2		3
CO4	3	3	3	3	2	2	3	3		2		3
CO5	3	3	3	3	2	2	3	3		2		3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Irrigation Engineering and	Garg S.K	Khanna Publishers	2023 (38th
1	Hydraulic Structures			R edition)
2	Irrigation, Water Resources and	Modi. P. N	Standard Book House	2020
2	Water Power Engineering			
3	Irrigation and Water Power	Punmia B.C, B.B.	Laxmi Publications (P)	2010(12th
3	Engineering.	Pande Lal	Ltd.	edition)
	Water Resources Engineering-	Sathyanarayana M. C.	New Age International	2020 (2nd
4	Principles and Practice		Publishers	Revised
				edition)
	Irrigation, Water Resources and	K R Arora	S.B.H Publishers and	2010
5	Water Power Engineering		Distributors, New	
			Delhi.	

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Theory & Design of Irrigation Structures -Vol III	Varshney, R.S	Nem Chand & Bros., Roorkee	2001(5 th edition)			
2	Irrigation and Water Resources Engineering	Asawa. G.L	New Age International Publishers	2008			
3	Irrigation Engineering & Hydraulic Structures	Sahasrabudhe S.R.,	S.K. Kataria & Sons	2013			

INTELLIGENT TRANSPORTATION SYSTEMS

Course Code	OECET721	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understand the need of the ITS and ITS System requirements
- 2. List the various ITS user services and identify their major components
- **3.** Suggest the appropriate tools and components in various functional areas of transportation for field conditions.
- **4.** Identify the importance of automated highway systems and new technology applications in autonomous vehicles

Module	Syllabus Description	Contact
No.	Synabus Description	Hours
	Introduction to Intelligent Transportation Systems:	
	Basics of ITS: History of ITS, Urbanisation and motorisation, Transport	
1	system characteristics and problems. ITS- components, importance, need,	9
1	challenges. ITS initiatives in India	9
	Understanding ITS: Functionalities required for user service, ITS	
	architecture, ITS technology building blocks (introduction only)	
	Traffic management and ITS: Traffic management – objectives, measures,	
	application of ITS for traffic management	
	ITS user services and applications: (introduction only)	
2	ATIS advanced traveller information system- Introduction, Functional areas,	9
2	components. AVCS-advanced vehicle control system, APTS- advanced	9
	public transportation system, CVOS-commercial vehicle operation system	
	Application of ITS- Emergency management- objectives, components,	
	benefits	

	Electronic toll collection- objectives, components.	
	Fleet management and operations	
3	Transport Demand management and ITS: Introduction, Application of ITS for TDM- Promotion of Public transport, Road pricing, parking management, High occupancy lanes, Bicycle rentals, carpooling, integrated fare, traffic rule enforcement, Incentive schemes. Use of GPS and GIS in ITS: Introduction to GPS and GIS, Automatic vehicle location and identification, real time passenger information, GSM Technologies.	9
4	Automated Highway systems: AHS: Introduction, Concepts and technologies of AHS, Connected vehicle system, Vehicle automation, Benefits, goals, challenges with AHS. Sensing Technologies: In vehicle- categories, examples, Issues, In road-intrusive, non-intrusive, application, uses. Smart Roads: concepts and technologies, smart street lights, smart intersection Self driving car: Technology, examples ITS case studies: world examples, Indian examples.	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the need of the ITS and ITS System requirements	K2
CO2	List the various ITS user services and identify their major components	K2
CO3	Suggest the appropriate tools and components in various functional areas of transportation for field conditions.	К2
CO4	Identify the importance of automated highway systems and new technology applications in autonomous vehicles	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									
CO2	3	2	1									
CO3	3	2	3									
CO4	3	3	2									

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books										
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year							
1	Intelligent transport systems	Pradip Kumar Sarkar and Amit Kumar Jain	PHI Learning Private Limited	2018							
2	Fundamentals of Intelligent Transportation Systems Planning	M.A. Chowdhury and A. Sadek	Artech House,	2010, First Edition							
3	Automated Highway Systems,	Petros A. Ioannou,	Springer Science & Business Media	2013							
4	Intelligent Transport Systems Standards,	Bob Williams,	Artech House Publishers,	2008							

	Reference Books										
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year							
1	Transportation Engineering: An Introduction, ,	C. J. Khisty and B. K. Lall	Prentice- Hall India	2002							
2	ITS Hand Book 2000: Recommendations for World Road Association (PIARC)	PIARC Committee on Intelligent Transport	Artech House	2000							
3	Systems Engineering for Intelligent Transportation Systems-an introduction to transportation professionals,	FHWA, Department of Transportation,	Federal Highway Administration	January 2007							

	Video Links (NPTEL, SWAYAM)							
Sl No.	Link ID							
1	https://archive.nptel.ac.in/courses/105/101/105101008/							

ENVIRONMENTAL HEALTH AND SAFETY

Course Code	OECET722	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To build environmental health literacy among students and encourage them to take safety measures against various environmental hazards.
- **2.** To motivate the students in maintaining and improving the quality of the environment and empower learners to take appropriate actions to reduce the environment pollution.

Module	Syllabus Description	Contact Hours				
No.						
1	Introduction to Occupational Health And Toxicology: Safety at work – Socio – Economic reasons. Introduction to health and safety at various industries. occupational related diseases-Musculoskeletal disorders, hearing impairment, carcinogens, silicosis, asbestosis, pneumoconiosis – Toxic materials and substances used in work, exposure limits, toxicological investigation, Industrial Hygiene, Arrangements by organisations to protect the workers.	7				
2	Chemical hazards- Dust, fumes, vapour, fog, gases; Methods of Control. Biological hazards- Classification of Biohazardous agents— bacterial agents, viral agents, fungal, parasitic agents, infectious diseases, control of biological agents at workplaces. Noise, noise exposure regulation and control. Radiation Hazards, Types and effects of radiation on human body, disposal of radioactive waste.	9				
3	Safety in Construction industry - Scaffolding and Working platform, Welding and Cutting, Excavation Work, Concreting, control measures to	9				

	reduce the risk. Electrical Hazards, Protection against voltage fluctuations, Effects of shock on human body.	
4	Safe working environment - The basic purpose and benefits of safety inspection, First-aid appliances, shelters, rest rooms and lunch rooms, use of personal protective equipment, Role of an individual in conservation of natural resources, Methods for controlling water pollution, role of individual in prevention of pollution.	11

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the Toxicology and Occupational Health associated with industries.	K2
CO2	Identify chemical and microbial agents that originate in the environment and can impact human health.	K2
СО3	Describe various measures to ensure safety in Construction industry.	K2
CO4	Describe the safety measures against various environmental hazards.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					2	2					
CO2	3					2	2					
CO3	3					2	1					
CO4	3					3	2					
CO5	3					2	2					

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Environmental and Health and Safety Management	By Nicholas P. Cheremisinoff and Madelyn L. Graffia	University College London Press LimitedWilliam Andrew Inc. NY	1995
2	Effective Environmental, Health, and Safety Management Using the Team Approach	Bill Taylor	Culinary and Hospitality Industry Publications Services	2005

	Reference Books					
Sl. No	Title of the Book	Name of the Publisher	Edition and Year			
1	Handbook of Occupational Safety and Health	Slote. L	JohnWilleyand Sons, NewYork	2019		
2	Industrial Accident Prevention	Heinrich H.W	McGrawHill Company,NewYork	1980		
3	Pollution control in process industries	S.P.Mahajan	Tata McGraw Hill Publishing Company, New Delhi	1993		

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Sl. No. Link ID				
1	https://archive.nptel.ac.in/courses/114/106/114106017/				

WATERSHED CONSERVATION AND MANGEMENT

Course Code	OECET723	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:3:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To develop watershed management program, making proper use of all available resources.
- 2. To obtain optimum output from watershed with minimum hazards to natural resources.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Watershed Management: Definition and importance of watersheds - Watershed functions and processes -Watershed management objectives and principles- Integrated and multidisciplinary approach for watershed management. Hydrological Cycle and Watershed Characteristics: Components of the hydrological cycle - Watershed characteristics (size, shape, slope, drainage pattern -Hydrological processes in watersheds (precipitation, infiltration, runoff) Importance of Watershed Properties: Effect of Physical Properties, Effect of Geomorphologic Factors & Associated Processes	9
2	Soil and Water Conservation Techniques: Soil erosion- types, causes, and effects, Soil conservation methods (contour plowing, terracing, strip cropping), Water conservation techniques (rainwater harvesting, check dams, recharge pits)	9

	Role of Vegetation in Watershed Management: Importance of vegetation in soil and water conservation - Types of vegetation and their roles in watershed health - Afforestation and reforestation practices Drought management- Drought assessment, Drought analysis- Drought mitigation	
3	Watershed Management Planning and Implementation: Steps in watershed management planning - Community involvement in watershed management - Case studies of successful watershed management projects Environmental and Socio-Economic Considerations: Environmental impact assessment of watershed projects - Social and economic benefits of watershed management - Policy and legal frameworks for watershed management - Watershed management for conservation of resources and enhancing productivity in problem lands	9
4	Watershed Modeling and Geographic Information Systems (GIS): Introduction to watershed modelling- Use of GIS in watershed management - Applications of remote sensing in watershed analysis Delineation and Prioritization-Concept of Topographic or Contour Map, Boundary Delineation, GIS for Delineation, Accuracy in Delineation, Concept of Priority, Factors, Basics & Methods, Purpose & Benefits Land Management: Land use and Land capability classification, management of forest, agricultural, grassland and wild land. Reclamation of saline and alkaline soils Integrated watershed modelling – basic concepts	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	To understand the concepts and importance of watershed management.	K1
CO2	To learn the techniques for soil and water conservation.	К3
CO3	To develop skills for designing and implementing watershed management plans.	К3
CO4	To assess the environmental, social, and economic impacts of watershed projects.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					2	2					1
CO2	3	2	1	1	1	2	1					1
CO3	2	2	1	1	2	2	2	1			2	1
CO4	3	2	1	1	1	2	3	3				1

	Text Books					
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year		
1	Watershed Management	JVS Murthy	New Age International	revised edition -1998		
2	Land and Water Management	VVN Murthy	Kalyani Publication	2015		
3	Irrigation and Water Management	D K Majumdar	Prentice Hall of India	revised edition -2001		
4	Hydrology and Watershed Management	Vijay P. Singh and Ram Narayan Yadava	Allied Publishers	2003		
5	Soil and Water Conservation Engineering	R. Suresh	Standard Publishers Distributors	2 nd edition 2005		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Integrated Watershed Management: Principles and Practice	Isobel W. Heathcote	Wiley	2 nd edition 2009		
2	Water Resource Engineering	R. Awurbs and WP James	Prentice Hall	revised edition 2001		

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Sl. No. Link ID				
1	https://archive.nptel.ac.in/courses/105/101/105101010/				

FORENSIC ENGINEERING

Course Code	OECET724	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. This course explores various aspects of Forensic Engineering and different methods, tools and procedures used by Engineers to investigate and analyze.
- 2. The students will learn to develop their awareness in Forensic Engineering.

Module	Syllabus Description	Contact
No.	Synabus Description	
1	Introduction to Forensic Engineering - Forensic Engineering - Definition, Investigation Pyramid, Eyewitness Information, Role in Legal system, Scientific Method - Applying scientific method in forensic engineering - engineer as expert witness - scientific methods and legal system, Qualification of forensic engineer - Technical knowledge - oral and written communication - other skills - personality characteristics, Ethics and professional responsibilities	9
2	Forensic Engineering Workflow and Investigation Methods - Forensic Engineering Workflow-Team &planning-preliminary onsite investigation. Sampling-selection of sample-collection- packing-sealing of samples, Source and type of evidence - Paper documentation- digital documentation-electronic data. Physical Evidence-Collection of photograph-cataloguing - Recognizing the Evidence-organizing Evidence Analysis -Reporting, Investigation Methods- Cause and Causal mechanism analysis-Time and event sequence-STEP method. Human Factors, Human errors - Analysis of	9

	Operative Instruction and working Procedures	
3	Physical Product Failure & Analytical Methods - Introduction to typical Forensic Engineering Tool box-NDT, Crack detection and human eye - Hardness testing- and Destructive testing Methods with case studies, Indirect stress strain Analysis-Brittle lacquer technique, Contact Radiography-Metallography-EDAX method, Forensic Optical Microscopy-Examination-Magnification-USB Microscopy -Wifi Enabled microscopy -Reflected microscopy, Novel Tools and System -Contour Method-Flash Thermography, Thermographic signal reconstruction (TSR)-Electromagnetically induced acoustic Emission (EMAE)-Pulsed Eddy Current (PEA)-Theory only	9
4	Engineer in the Court room & Criminal Cases - Role of an Engineering Expert-Report-pre trial meetings-Alternative dispute resolution-Single joint expert. Engineer in the court room, Criminal Cases-Introduction-Counterfeit coins-fraudulent road accidents-Fraudulent Insurance claims, Cyber Crimes and Cases- SIM Swapping -ATM Cloning-Microsoft Internal Spam-Intellectual property cases.	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	Assignment/	Internal	Internal	
Attendance	lance Microproject Examination-1		Examination- 2	Total
	Microproject	(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	uestions, each of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify the fundamental aspects of forensic Engineering	K2
CO2	Apply forensic Engineering in Practical work flow and Investigation	К3
CO3	Apply methods and analysis in Forensic Investigation	K4
CO4	Develop practical strategies and standards of Investigation	K4
CO5	Create an awareness in criminal cases and create Engineering expertise in court room on forensic Engineering	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3				3		3			3
CO2	3	3	3				3		3			3
CO3	3	3	3				3		3			3
CO4	3	3	3				3		3			3
CO5	3	3	3				3		3			3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Forensic Engineering The Art &Craft of a failure detective	Colin R Gagg,	Taylor & Francis Publishing	2020			
2	Principles of Forensic Engineering Applied to Industrial Accidents	Luca Fiorentini ,Luca Marmo	Wiley	2019			
3	Forensic Engineering Fundamentals	Harold Franck, Darren Franck	Taylor & Francis	2013			
4	Forensic Engineering Investigation	Randall K Noon	CRC press	2001			
5	Guidelines for forensic Engineering practice	Joshua B Kardon	ASCE	2012			

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Engineering standards for forensic Applications	Richard W. Mclay and Robert N. Anderson	Academic Press	1 st edition, 2018
2	Forensic Engineering (Advanced forensic Science)	Max M Houck	Academic Press	1 st edition, 2017
3	Practical Cyber Forensics. An Incident-based Approach to Forensic Investigations	Niranjan Reddy	Apress	2019
4	Forensic Materials Engineering Case Studies	Peter Rhys Lewis, Ken Reynolds, Colin Gagg	CRC Press	2003
5	Forensic Engineering: Damage assessment for residential and commercial structures	Stephen E Petty	CRC press	2 nd edition, 2017

FINANCE FOR ENGINEERING

Course Code	OECET725	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. The course details the fundamental concepts of engineering economics, construction accounting, financial management and basic tools used in the economic decision making of construction projects. The course helps the students acquire knowledge on basic financial management aspects and economics to facilitate the process of economic decision making effectively.

Module	Syllabus Description	Contact
No.	Synabus Description	
1	Introduction to Book keeping and Accounting — Accounting Process — Purpose of accounting — Classification of accounting — Generally Accepted Accounting Principles — Conventions and Concepts — Double entry system of accounting — Preparation of Journal, Ledger and Trial Balance. (Illustrative problem) Introduction to financial statements — Preparation of Profit & Loss Account and Balance Sheet. (Simple problems)	10
2	Rate of Return method – Minimum attractive rate of return (MARR), Internal Rate of Return (IRR) – Economic Decision Making using Incremental Rate of Return (IRoR) Analysis of public projects – Benefit cost analysis – applications. Breakeven analysis – Fixed and variable cost – Total cost – Breakeven point and breakeven chart– Interpretation, limitations.	10

3	Working capital – Operating cycle – Working capital management – Sources of finance - long term and short term financing. Financing of PPP projects – Sources of project finance – Providers of finance – Financial structure – Financial indicators – Special nature of infrastructure financing need.	8
4	Construction Economics – Definition and scope. Time value of money – Simple and Compound interest – Time value equivalence –Cash flow diagrams – Interest calculations – Compound interest factors – Interest tables. Evaluating alternatives by equivalence – Present worth comparison – Future worth comparison – Annual cost and worth comparison.	8

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the principles and process of accounting.	K2
CO2	Apply basic analysis tools like rate of return, benefit cost, and breakeven analysis in economic decision making.	К3
CO3	Prepare financial statements and apply revenue recognition methods.	К3
CO4	Explain the basics of financial management and sources of finance for a project.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2										1	
CO2	3										3	
CO3	3										2	
CO4	3										2	

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Construction Project Management	Kumar Neeraj Jha	Dorling Kindersley (India) Pvt. Ltd	2nd ed. Pearson, 2015			
2	Engineering Economy	Leland Blank, and Anthony Tarquin	McGraw Hill	Seventh Edition,2012			

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Accounting Made Easy	Agrawal R and Sriniwasan, R	Tata McGraw-Hill	2005		
2	Engineering Economy	Theusen G.J. and Fabrycky W.J.	Prentice-Hall, Inc.	9th Edition, 2001		
3	Finance for Engineers- Evaluation and Funding of Capital Projects	Crundwell F.K.	Springer, London (ISBN 978-1-84800-032-2)	2008		

NPTEL - Link ID

NPTEL :: Civil Engineering - NOC: Introduction to Accounting and Finance for Civil Engineers

SEMESTER 8 CIVIL ENGINEERING

SEMESTER S8

WATER AND AIR QUALITY MANAGEMENT

Course Code	PECET861	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide knowledge of aquatic ecology, water pollution, water quality standards, water quality assessment and its management
- 2. Students would get an insight into the dispersion of air pollution in the atmosphere, its sources, sampling techniques and control measures.

Module No.	Syllabus Description	Contact Hours
1	Water quality: impurities (pollutants and contaminants) in water, their significance and estimation techniques; water borne diseases; standards of potable water. Impact of water pollutants on environment; self-purification of waste in streams; zones of purification; eutrophication; disposal standards	7
2	Water treatment: Aeration and types of aerators; purpose and mechanism of flocculation; coagulants used in water treatment; factors influencing coagulation; estimation of coagulant dose; types of flash mixers and flocculators; sedimentation; analysis of discrete and flocculent settling; sedimentation tanks; Filtration: types and design of filters, Disinfection: chemical and non-chemical methods	9
3	Water resources and quality management in India: Water availability; water stress index; status and trend of surface and groundwater; issues and policy	9

	interventions; pollution of rivers, lakes and ground water; GAP and National River Action Programme; role of national and international agencies in water health and sanitation.	
4	Air Pollution: Types, Sources, Effects on human health, vegetation, materials, global environmental issues. Air sampling and pollution measurement methods, principles and instruments, ambient air quality and emission standards, Air pollution indices, Air Act, legislation and regulations Control principles, Removal of gaseous pollutants by adsorption, absorption, reaction and other methods. Particulate emission control	11

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Gain insight into key concepts of water quality, water quality and health, impairment of natural water bodies	K2
CO2	Comprehend components of water treatment and schemes based on source of water, select suitable unit process and unit operation at conceptual, theoretical, methodical level	К3
CO3	Develop an integrated perspective on water resource and water quality management	К3
CO4	Design, operate and control the devices used for air quality management	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					2	2					
CO2	3					2	2					
CO3	3					2	1					
CO4	3					2	2					

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Water Supply and Sanitary Engineering	Birde G.S. and Birde J.S	7th ed., New Delhi, Dhanpat Rai Publishing	2004					
2	Air pollution	M. N. Rao, H. V. N. Rao	Tata McGraw Hill Pvt. Ltd, New Delhi	1993					
3	Basic Environmental Technology: Water Supply, Waste Management and Pollution Control	Nathanson J.A.	4th ed., New Delhi, PHI Learning	2009					

Reference Texts								
Sl. No	Title of the Book	Name of the Publisher	Edition and Year					
1	Handbook Of Environment And Waste Management: Air And Water Pollution Control	te Management: Air And Nazih K Shammas,						
2	Water and Air Effluents Treatment Handbook	NPCS Board of consultants and Engineers	ASIA PACIFIC BUSINESS PRESS Inc.	2009				

	Video Links (NPTEL, SWAYAM)						
Sl. No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc24_ag06/preview						
2	https://archive.nptel.ac.in/courses/105/107/105107213/						

VALUATION OF REAL PROPERTIES

Course Code	PECET862	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET601	Course Type	Theory

Course Objectives:

1. This course introduces the principles and methodologies involved in the valuation of real properties. It covers fundamental concepts in real estate appraisal, exploring various approaches to property valuation, market analysis, and regulatory considerations. Through theoretical discussions, case studies, and practical exercises, students will gain the skills and knowledge necessary to assess the value of different types of real estate.

Module No.	Syllabus Description	Contact Hours
1	Role of valuer-Classification-Valuers' Functions & Responsibilities. Purpose-doctrine of estate-different form of value-factors affecting, aspects, characteristics. Supply and demand forces, factors affecting demand and supply-Cost, Price & Value Type of interest (right) in land-Free hold-Lease hold, Forms of lease, Mortgage Income, Outgoings-Type, sinking fund, Year's Purchase Numerical examples. Valuation table-use	8
2	Investment-Type-characteristics of ideal investment Appraisal technique – Net present value (NPV) by discounted cash flow method (DCF), Internal rate of return (IRR)-Numerical Example. Life of various types of buildings - Depreciation- Obsolescence-Functional & Economical -difference between depreciation and obsolescence Method of estimating cost depreciation-Numerical examples	8

3	Building FSI – Plot coverage – Types of structure Method of Valuation for open land- Comparative method, Abstractive method, Belting method-Numerical examples Method of valuation of land with buildings- Rental method, direct comparison of the capital, Valuation based on profit- Numerical examples Valuation of apartment-FSI – Super built-up area, Undivided share of land	
	Valuation for bank-Purposes – Security, Primary and collateral Report writing for various purposes of valuation-Sale, Purchase, Mortgage, Taxation, Insurance, Liquidation etc	
4	Environment & Valuation- Environmental factors affecting valuation Professional ethics- Model Code of Conduct as notified by MCA under the Companies (Registered valuers and valuation) Rules 2017 - Ethical considerations under terms of engagements Salient features of Real estate (regulation & development) Act 2016, Transfer of property Act, Land acquisition, Indian easement Act, Estate Duty Act of 1953, Wealth Tax Act of 1957, Gift Tax Act of 1958, Income Tax Act of 1964, Rating Laws of 1866 (brief description only) Important case laws-Case study based on case laws CPWD Rates, Cost Index, Cost Inflation Index Valuation for Capital Gain Tax-Numerical examples	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Define the technical terms involved in valuation of Real properties	K2
CO2	Identify the return on investment on real properties	К3
CO3	Prepare valuation of land and buildings	К3
CO4	Recall the important aspects of Acts related to valuation	K1

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	3											
CO3	3	2								2		
CO4								2				

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Valuation of real properties	Rangwala	Charotar Publishing House Pvt. Ltd.	2020					
2	Basics in real estate valuation	P.T. Hardikar	P.T. Hardikar	2022					
3	Estimation and costing in civil engineering	B. N. Dutta	UBS publishers	28 th Rev. Edition, 2020					

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Real estate principles : A value approach	David Ling and Wayne Archer	McGraw-Hill Education	Fifth Edition, 2018			
2	Fundamentals of real estate appraisal	R. Martha Williams & L. William Ventolo	Real Estate Education Co.	1998			
3	Latest CPWD DAR and DSR		'	1			

	Video Links				
Module No.	Link ID				
2	www.onlinecourses.swayam2.ac.in/imb22_mg06/preview				

CONTRACTS MANAGEMENT

Course Code	PECET863	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET601	Course Type	Theory

Course Objectives:

- 1. To provide students with a comprehensive understanding of the basic principles of contract law and their application in construction projects.
- **2.** To ensure students can identify the essential elements required for the formation of a valid contract.

Module No.	Syllabus Description			
1	Introduction to contract management-Definition & importance, Type of contracts (Lump sum, item rate, EPC, BOT etc), Agreement and contract Indian Contract Act 1872 – Layout and Salient Features - Performance and Non-performance of Contract - Breach of Contract - Consequences and Remedies - Liquidated Damages, Extension of Time	9		
2	Contract Documentation-Form of Agreement & Hierarchy of Terms and Conditions- Typical structure of contract- Preamble, Scope and Specifications- Preliminaries and General - Insurance policies, Bonds and Guarantees, Terms of Payment- Price adjustment- Assignments and Subcontracting	9		

3	preparation and submission, Evaluation of bid and award of contract, Negotiation. Standard Forms of Contracts - FIDIC form of Contract. Performance Bond - Programme of Work - Submissions and approvals - Progress Review Meetings - Certification and Interim Payments - Quality and Safety - Variation clauses and changes to the scope of work - Claims - Delay and disruption - Force majeure and Exceptional events - Suspension & Termination - Taking over and Substantial completion - Release of Performance Bond/Security - Defect Liability and Release of Retention Money - Contract closure and Final	10
4	Conflicts, Disputes, and their causes - Conflict avoidance and tiered dispute resolution clauses - Alternative Dispute Resolution Methods & Litigation - Best practices in dispute resolution and management - General Provisions - Arbitration Agreement, Composition of Arbitral Tribunal	8

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the basic elements of conditions of contract.	К2
CO2	Recall provisions of Indian contract law & FIDIC	K1
CO3	Explain the various steps involved in the contract documentation	К3
CO4	Explain the process of dispute resolution in contracts	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			2								3	
CO2			2								3	
CO3			2							3		
CO4			2								3	

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Law of contract and specific relief	A. Md. Samiulla	Asia Law House	2016		
2	Construction project management	K.K.Chitkara	McGraw Hill Education	2010		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Indian Contract Act (1872)					
2	FIDIC Contracts: Law and Practice	Ellis Baker, Ben Mellors , Scott Chalmers , Anthony Lavers	Informa Law from Routledge	2009		
3	Construction contract: Law and Management	John Murdoch , Ronan Champion , Will Hughes	Routledge	5th edition, 2015		

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1, 2	NPTEL :: Law - NOC:Advanced Contracts, Tendering and Public Procurement				

SEMESTER S8 ADVANCED DESIGN OF STEEL STRUCTURES

Course Code	PECET864	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET602	Course Type	Theory

Course Objectives:

1. The proposed course is expected to enhance and strengthen the knowledge on detailed design methods for steel structures, in compliance with Indian codes

Module No.	Syllabus Description	Contact Hours
1	Types of bolts-Bearing and High strength bolts-Prying Force-Beam to Column connections-Design of seat angle-Unstiffened-Design of seat angle-Stiffened web angle & end plate connections, Beam and column bolted splices-Design of framed beam connection-continuous beam to beam connection	9
2	Structure and properties of weld metal. Beam to-column connections— Stiffened beam seat connection—Web angle and end plate connections— - Tubular Connections—Parameters of an in-plane joint - Welds in tubular joints—curved weld length at intersection of tubes	9
3	Design of plate girders subjected to uniformly distributed loads – design of stiffeners	9

	Design of gantry girders—Introduction—Loading consideration—Selection of gantry girder—Position of moving load for maximum effects, profile of gantry girder, limitation on vertical deflection—Design of gantry girders.	
4	Design of Light Gauge Structures: Design of light gauge steel structures: Introduction—Types of cross sections—Materials-Local and post buckling of thin elements—Stiffened and multiple stiffened compression elements—Tension members—Beams and deflection of beams—Combined stresses and connections	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the behaviour and properties of structural steel members to resist various structural forces and actions and apply the relevant codes of practice	K2, K4
CO2	Analyse the behaviour of structural steel members and undertake design at both serviceability and ultimate limit states	K3, K4
CO3	Apply a diverse knowledge of design of steel engineering practices applied to real life problems.	K2, K3
CO4	Analyse and design cold formed steel members	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	2	3	2	-	-	-	-	-	-	-	-	-
CO3	2	3	2	-	-	-	-	-	-	-	-	-
CO4	2	3	3	-	-	-	-	-	-	-	-	-
CO5	2	3	3	-	_	_	-	_	-	-	-	-

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Steel structures: Design and Practice	N Subramanian	Oxford Publication			
2	Design of Steel structures	Duggal S.K.	Tata McGraw-Hill			
3	Design of Steel structures	A. S. Arya, J.L. Ajmani and Awadesh Kumar	Nem Chand and Bros			
4	Cold-Formed Steel Structures	Wie-Wen Yu	McGraw Hill Book Company			

	Reference Books					
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year		
1	Steel design	William T Segui	Cenage Learning			
2	Design of Steel Structures- Vol I and Vol II	Ramachandra S. and Virendra Gehlot	Standard Book House			
3	IS 800-2007, Code of practice for structural steel design		BIS			

Sl. No.	Link ID
1	https://archive.nptel.ac.in/courses/114/106/114106047/
2	https://archive.nptel.ac.in/courses/105/105105162/

SEMESTER S8
URBAN TRANSPORTATION PLANNING

Course Code	PECET866	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

1. The course aims to introduce to the students the concept of transportation planning and impart in-depth knowledge on the four stage planning process and to highlight the need for sustainable transportation

Module No.	Syllabus Description	Contact Hours
1	Need for transportation planning- Characteristics of urban travel, Transportation issues and challenges, Detrimental effects of traffic on environment. Urban Structure- types and properties -centripetal, grid, linear, directional, Movement and Accessibility – Hierarchy of transportation facilities. Demand analysis in transportation planning, Modelling based on consumer behavior of travel choices, Basic principles of travel demand analysis and assumptions.	9
2	Transportation planning process -Systems approach, Elements/stages of transportation planning process - Goal, objectives and constraints, Trip-based and Activity-based approaches for transportation planning. Data collection – Definition of study area, zoning- selection of cordon, Sampling techniques and sample size, Sources of data and types of surveys for planning, Trip Generation-	9

	Factors influencing grip generation, methods of forecasting trip	
	generation rates- expansion factor, linear regression, category analysis.	
3	Trip Distribution- Growth factor methods, Synthetic methods- Gravity models, opportunity model. Modal Split- Factors influencing modal split, Types of mode split models – trip end, trip interchange, logit model.	9
3	Traffic assignment- Purpose, Elements of transportation networks- Nodes and links, Methods for traffic assignment	
4	Transportation and land use - Role of urban activity analysis in transportationplanning, Transportation impacts on activity system, Land use transportation interaction. Land use models- Selection of land use model, Lowry model-Structure, features, Model equation system. Sustainable transportation- features, facilities, Transit oriented development, Non transport solutions to transport problems, Transportation demand management, Quickresponse techniques for demand estimation. Comprehensive Mobility Plan- objectives and activities involved, Application of GIS in transport planning	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Identify the need for transportation planning, the issues and challenges related totransportation and its interaction with urban structure and land use	К3	
CO2	Apply the concept of travel demand and analyse its role in transportation planning and to apply the concept in systems approach to transportation planning process.	K3, K4	
CO3	Apply the concept of delineation of study area, sampling of data, and data collection techniques for the four stage planning process and to analyse the techniques for predicting trip generation.	K3, K4	
CO4	Apply and analyse the methods for predicting trip distribution, mode split and traffic assignment	K3, K4	
CO5	Apply the land use transport models and to analyse the sustainable approaches to transportation planning and preparation of comprehensive mobility plan with application of GIS	K3, K4	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		1	2	1		3	3	3				2
CO2		1	2	2		2		1				2
CO3	2	2	2	3	2	2		1				2
CO4	3	3	3	3	3	2		1				2
CO5	2	1	3	3	3	3	3	3		2	2	3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to Transportation Planning	Bruton,M.J	Hutchinson of London	2021			
2	Principles of Transportation Engineering	Chakraborthy,P and Das,A	PHI Learning	2 nd Ed			
3	Traffic Engineering and Transport Planning	Kadiyali, L.R	Khanna Publishers	8 th Ed			
4	Highway Engineering,	Rogers M	Blackwell Science				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Principles of Urban Transport Planning	chinson, B G	Tata McGrawHill	1974			
2	Metropolitan Transportation Planning	Dickey, J. W	Tata McGrawHill	1975			
3	Urban Transportation Planning a Decision Oriented Approach	Mayer, M.D and Miller, E. J,	Tata McGrawHill	2 nd Ed			
4	Transportation Engineering and Planning	Papacostas, C. S. and Prevedouros, P.D	Prentice Hall of India Pvt. Ltd.	2012, 3 rd Ed			

	Video Links (NPTEL, SWAYAM)				
SL.No.	Link ID				
1	https://archive.nptel.ac.in/courses/105/105/105105208/				

RURAL WATER SUPPLY AND ONSITE SANITATION SYSTEMS

Course Code	PECET867	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET503	Course Type	Theory

Course Objectives:

- 1. Understand key concepts and the importance of rural water supply and on-site sanitation systems
- 2. Explore the design, implementation, and sustainability of water supply systems in rural areas
- 3. Study various on-site sanitation technologies and their applications in rural settings.
- **4.** Develop skills for planning, managing, and evaluating rural water and sanitation projects, considering socio-economic, cultural, and environmental factors.

Module No.	Syllabus Description	
1	Introduction to Rural Water Supply and Sanitation Overview of Global Water and Sanitation Challenges, Global water crisis: statistics and trends, Importance of water and sanitation in rural development, Sustainable Development Goals (SDGs) related to water and sanitation. Principles of Rural Water Supply, Basic water supply concepts: sources, availability, and quality, Water demand estimation in rural communities, Water supply systems: gravity-fed, pumped, and rainwater harvesting	9

	Design and Implementation of Rural Water Supply Systems	
	Water Source Development, Identifying and protecting water sources: surface	
	water, groundwater, and rainwater, Water source contamination and	
	protection strategies. Water Treatment and Distribution, Water treatment	
2	methods: filtration, disinfection, and safe storage, Distribution systems:	11
	pipelines, storage tanks, and standpipes, Operation and Maintenance strategies	
	for rural water supply systems, Monitoring and evaluation of water supply	
	services	
	Services	
	Introduction to On-Site Sanitation	
	Concepts of on-site sanitation: Importance of sanitation for public health and	
	environment. Design and construction of basic on-site sanitation systems: pit	
	latrines, septic tanks, and composting toilets. Advanced sanitation	
3	technologies: biogas digesters, eco-san toilets. Selecting appropriate sanitation	9
	systems based on local conditions. Waste Management and Resource	
	Recovery: Faecal sludge management: collection, treatment, and disposal.	
	Resource recovery from sanitation: composting and biogas generation.	
	Planning and Management of Rural Water Supply and Sanitation	
	Projects	
	Planning water supply and sanitation projects: needs for assessment and	
	feasibility studies. Funding and financing options for rural water and	
4	sanitation projects. Stakeholder engagement and community participation.	9
	National and international policies on water and sanitation. Regulatory	
	frameworks and standards for rural water and sanitation. Role of government,	
	NGOs, and private sector in rural water and sanitation. Sustainability and	
	Innovation in Water and Sanitation technology in rural areas.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand global water and sanitation challenges, importance and principles of rural water supply systems	K2
CO2	learn to identify, protect, and treat water sources, manage distribution systems, and oversee the operation and maintenance of rural water supply services.	К3
CO3	design on-site sanitation systems, select appropriate technologies, and manage waste and resource recovery processes.	К3
CO4	plan and assess rural water and sanitation projects, explore funding, engage stakeholders, and apply policies and innovations for sustainable implementation.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	-		2	2					
CO2	3	3	2			2	2				1	
CO3	3	2	3			2	3				1	
CO4	3	3	2			3	3				3	

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Rural water supply and sanitation	Sanjay Gupta	Vayu Education of India	First Edition 2012			
2	Rural water supply and sanitation	Sharma J K	Ardent Publications	First Edition 2012			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Wastewater Engineering, Treatment and Reuse	Metcaff and Eddy	Tata McGrawhill publications	4 th Edition 2017			
2	Sewage disposal and air pollution Engineering	S K Garg	Khanna publishers	43 rd edition			
3	Manual of water supply and t	reatment, 3rd edition, CPHEEO	, GOI, New delhi	I			

DESIGN OF EARTHQUAKE RESISTANT STRUCTURES

Course Code	PECET865	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET303/ Equivalent	Course Type	Theory

Course Objectives:

1. Apply the basic seismic concepts and building code provisions to the seismic design of structures

Module No.	Syllabus Description					
1	Introduction – Classification of dynamic loads – essential characteristics of a dynamic problem – methods of discretization– single degree of freedom systems – basic components of a dynamic system. Formulation of equation of motion – Newton's 2nd law and D' Alembert's principle generalized SDOF systems. Solution of the equation of motion – undamped free vibration – damped free vibration- critically damped under damped and over damped SDOF systems, Logarithmic decrement. (Numerical examples expected, but not derivations) Response to harmonic loading – steady state and transient states steady sate amplitude, Dynamic magnification factor. (Numerical examples expected, but not derivations)	9				
2	Base excited SDOF system - formulation of equation of motion – Response of SDOF base excited systems;	9				

	Response spectrum: Concept of pseudo acceleration, velocity. Response	
	spectra, Four-way logarithmic plot – DVA spectrum (concept only).	
	Multi degree of freedom systems – 2 DOF systems- Equation of motion-	
	Normal modes of vibrations and natural frequencies, MDOF systems: shear	
	building idealization and equation of motion - Natural frequencies and mode	
	shapes, orthogonality of normal modes.	
	Forced vibration analysis of MDOF Systems – Modal expansion of	
	response, Mode superposition method. (concept only)	
	Elements of Earthquake Engineering: Plate tectonics – faults, Earthquake	
	magnitude and intensity, Focus and Epicentre, Energy release and seismic	
	waves. Characteristics of Earthquake, Measurement of ground motion-	
	Seismographs, Seismic zone mapping.	
	Seismographis, seismie zene mapping.	
	Structural Systems for Seismic Resistance: Lateral load resisting systems in	
	RC and steel structures.	
3	Building Irregularities: in elevation – plan – influence of structural	9
3	classification- Concepts of seismic design- Centre of mass, centre of rigidity,	,
	torsional eccentricity	
	tersional coosinitions	
	Estimation of Seismic Demand on buildings:	
	Seismic coefficient method - Estimation of base shear and its distribution	
	along height based on Equivalent static method using IS 1893 for multi storied	
	buildings.	
	Response spectrum method(RSM): concept, (Numerical problems in RSM	
	not expected in exams)	
	Ductility considerations in earthquake resistant design of buildings:	
	Ductility of R.C structures- significance. Factors influencing ductility.	
4		9
	Ductile detailing provisions as per IS-13920 (2016)- for beams, columns,	
	beam-column joints and shear walls.	
	Evaluation of Earthquake proneness of building by preliminary inspection -	
	Rapid Visual Screening Technique	
	rapia visaai sereening reeninque	

NB: Assessment of RSM through submission of course project alone, which involves computer modelling of building, seismic analysis and design and submission of design drawings including ductile detailing provisions.

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation (Evaluate and Analyse): 20 marks

Assignment

1. Identify any requirement for an earthquake resistant structure and complete its design.

Criteria for evaluation:

- 1. Defining objectives (K4 4 points).
- 2. field data collection (K4 4 points)
- 3. Analysis of data (K5 4 points)
- 4. Verification with standard specification or rating (K5 4 points)
- 5. Final design (K4-2 points, K5-2 points)
 - a. Summarizes findings and insights. (K4)
 - b. Reflects critical thinking and informed decision-making. (K5)

Scoring:

- 1. Accomplished (4 points): Exceptional analysis, clear implementation, and depth of understanding.
- 2. Competent (3 points): Solid performance with minor areas for improvement.
- 3. Developing (2 points): Adequate effort but lacks depth or clarity.

4. Minimal (1 point): Incomplete or significantly flawed.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	2 questions will be given from each module,	
module.	out of which 1 question should be answered. Each question can have a maximum of 3 sub	
• Total of 8 Questions,	divisions. Each question carries 9 marks.	60
each carrying 3 marks	(4x9 = 36 marks)	
(8x3 =24marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply structural dynamics principles for seismic analysis of structures.	К3
CO2	Understand the principles of various lateral load resisting systems for building structures and apply the same to seismic design of structures.	К3
CO3	Estimate the seismic demand over structures	К3
CO4	Apply the principles of ductile detailing.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3										2

Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Dynamics of Structures- Theory and applications to earthquake engineering	Anil K. Chopra	Prentice Hall	2020					
2	Earthquake resistant design of structures	Pankaj Agarwal and Manish Shrikhande	PHI New-Delhi	2017					
3	Structural Dynamics	Mario Paz	CBS publishers	2004					

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Dynamics of Structures	Clough R.W, J.Penzien	MC GrawHill International							
2	Seismic Design of RC and Masonry Buildings	T Paulay and M J N Priestley	Wiley Inter Seience, 1	1992						
3	3 IS 1893 (2016): Criteria for Earthquake Resistant Design of Structures - Part 1 : General Provisions and Buildings									
4	IS 13920 (2016) Ductile Design a Seismic Forces - Code of Practice	_	Concrete Structures Subje	cted to						

Video Links (NPTEL, SWAYAM)							
Sl. No.	Link ID						
1	https://archive.nptel.ac.in/courses/105/101/105101004/						

WASTE MANAGEMENT

Course Code	OECET831	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To learn broader understandings on various aspects of solid waste management practiced in industries.
- **2.** To learn recovery of products from solid waste to compost and biogas, incineration and energy recovery, hazardous waste management and treatment, and integrated waste management.

Module No.	Syllabus Description								
1	INTRODUCTION TO SOLID WASTE MANAGEMENT: Classification of solid wastes (source and type based), solid waste management (SWM), elements of SWM, ESSWM (environmentally sound solid waste management) and EST (environmentally sound technologies), factors affecting SWM, Indian scenario, progress in MSW (municipal solid waste) management in India. Indian and global scenario of e-waste	9							
2	WASTE GENERATION ASPECTS: Waste stream assessment (WSA), waste generation and composition, waste characteristics (physical and chemical), health and environmental effects (public health and environmental) COLLECTION, STORAGE, TRANSPORT AND DISPOSAL OF WASTES: Waste Collection, Storage and Transport: Collection components, storage-containers/collection vehicles, collection operation, transfer station,	9							

	waste collection system design, record keeping, control, inventory and monitoring, implementing collection and transfer system.	
3	WASTE DISPOSAL: key issues in waste disposal, disposal options and selection criteria, sanitary landfill, landfill gas emission, leachate formation, environmental effects of landfill, landfill operation issues, a case study. HAZARDOUS WASTE MANAGEMENT AND TREATMENT: Identification and classification of hazardous waste, hazardous waste treatment, pollution prevention and waste minimization, hazardous wastes management in India.	9
4	WASTE PROCESSING TECHNIQUES & SOURCE REDUCTION, PRODUCT RECOVERY & RECYCLING: Purpose of processing, mechanical volume and size reduction, component separation, drying and dewatering. Source Reduction, Product Recovery and Recycling: basics, purpose, implementation monitoring and evaluation of source reduction, significance of recycling, planning of a recycling programme, recycling programme elements, commonly recycled materials and processes, E-waste recycling, a case study.	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the basics of solid waste management towards sustainable development	K2
CO2	Undestand technologies to process waste and dispose the same.	K2
CO3	Design working models to convert waste to energy	К3
CO4	Identify and classify hazardous waste and manage the hazard	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					3	3					2
CO2	3					3	3					2
CO3	3					3	3					2
CO4	3					3	3					2

Text Books							
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year			
1	Integrated Solid Waste Management, Engineering Principles and Management Issues	Tchobaanoglous, G., Theisen, H., and Samuel A Vigil,	McGraw-Hill Publishers	2014			
2	Waste Management	Bilitewski B., Hard He G., Marek K., Weissbach A., and Boeddicker H	Springer	1994			
3	Waste Management Practices: Municipal, Hazardous and Industrial,	John Pichtel	CRC Press	2014, 2nd Edition			
4	Solid Waste Engineering	Vesilind PA, Worrell W and Reinhart D	Brooks/Cole Thomson Learning Inc	2010, 2nd Edition			
5	Thermo-chemical Processing of Biomass: Conversion into Fuels, Chemicals and Power	Robert C. Brown	John Wiley and Sons, USA	2019			

Reference Books							
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year			
1	Integrated solid waste management: a life cycle inventory	White, F. R., Franke P. R., & Hindle M.	McDougall,P. John Wiley & Sons.	2001			
2	Handbook of solid waste management and waste minimization technologies	Nicholas, P., & Cheremisinoff, P. D.	Imprint of Elsevier Science	2005			
3	Environmental Engineering	Peavy, H.S, Rowe, D.R., and G. Tchobanoglous	,McGraw Hill Education	2017, 1st Indian Edition			
4	Waste Management Practices,	John Pichtel	CRC Press, Taylor and Francis Group	2005.			
5	Hazardous Waste Management	LaGrega, M.D.Buckingham,P.L. and Evans, J.C.	McGraw Hill International Editions, New York	2010			
6	Solid Waste Management - Present and Future Challenges,	Jagbir Singh, Ramanathan, AL.	I.K. International publishing House Pvt.Ltd., India.	2019			
7	Manual on Municipal Solid Waste Management	СРНЕЕО	Ministry of Urban Development, India	2016			

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID				
1	http://cpheeo.gov.in/cms/manual-on-municipal-solid-waste-management-2016.php				
2	https://nptel.ac.in/courses/105/103/105103205/				
3	https://nptel.ac.in/courses/120/108/120108005/				
4	https://nptel.ac.in/courses/105/106/105106056/				
5	https://nptel.ac.in/courses/105/105/105160				
6	https://nptel.ac.in/courses/103/107/103107125/				
7	https://nptel.ac.in/courses/105103205				
8	https://www.youtube.com/watch?v=k0ktJRoRcOA				
9	https://nptel.ac.in/courses/103/107/103107125/				
10	https://onlinecourses.nptel.ac.in/noc22_ce76/preview				
11	https://onlinecourses.swayam2.ac.in/cec20_ge13/preview				

RAINWATER HARVESTING

Course Code	OECET832	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To familiarize the students with the important aspects of Rain water harvesting system.
- **2.** To impart the knowledge about the various hydrologic phenomena and their relevance in the field of water conservation.

Module No.	Syllabus Description	Contact Hours
1	Introduction: Hydrologic cycle, Advantages of Rainwater, Factors affecting run off from catchment, Important points relating to water storage and recharging, Rainwater harvesting, Components of rain water harvesting, Catchment area, harvesting structures, soil moisture conservation, check dams, artificial recharge, farm ponds, percolation tanks.	9
2	Water harvesting: Principles, importance and issues, Water harvesting techniques – classification based on source, storage and use. Rain water harvesting methods, storing rain water for direct use, Recharging ground water aquifers from roof top runoff, Recharging ground water aquifers with runoff from ground areas, Modular Rain Water Harvesting System- Coarse mesh/leaf screen Gutter - Down spout/Conduit - First flushing device Filter- Sand Filter-Charcoal Water Filter	9
3	Recharging subsurface Aquifers: Methods of recharging subsurface aquifers-through recharge pit - recharge through abandoned hand pump - recharge through abandoned dug well/ open well - through recharge trench - recharge through shafts - recharge trench with bore	9

Artificial Recharge - Concept of artificial recharge of groundwater, recharge methods – basin - stream - channel, ditch and furrow, flooding and recharge well methods, recharge mounds and induced recharge. Concepts of Watershed - need for watershed development in India, Planning of watershed management – Drainage - ,watershed management for rainwater harvesting,	9
---	---

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Understand the different components of Rain water harvesting system	K1			
CO2	Describe the concept of Artificial Recharge and methods for groundwater storage	К3			
CO3	To study the watershed development and management with reference to Rain water harvesting system	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					1	1			1		
CO2	3					1	2			1		
CO3	3	1	2		1	2	1		1	1		1

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Groundwater Hydrology	Larry W. Mays, David Keith Todd	John Wiley & Sons,	2004					
2	Groundwater and Wells	Edward E. Johnson S.I	Johnson Screens	2007					

Reference Books						
Sl. No	Title of the Book	Name of the Publisher	Edition and Year			
1	Traditional Rainwater Harvesting Structures	Joji V.S., Reshma Susan Jacob	Springer Nature Switzerland,	2023		
2	Designing Rainwater Harvesting Systems Integrating Rainwater Into Building Systems	Celeste Allen Novak, Eddie Van Giesen, Kathy M. DeBusk	Wiley	2014		
2	Rainwater Harvesting Technic	ues to augment Groundwa	ater: Ministry of Water R	esources		

PUBLIC TRANSPORTATION SYSTEMS

Course Code	OECET833	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

- 1. To comprehend the Fundamental Concepts of Public Transit Systems
- 2. To Develop and Evaluate Transit Service and Operational Plans
- **3.** To Plan and Analyze Transit Lines and Networks
- 4. To analyze performance and economic aspects of Transit Systems

Module No.	Syllabus Description	Contact Hours
1	Basic Operating Elements of Public Transit, public transport travel characteristics, Transit travel characteristics: factors, spatial distribution, temporal variations, Passenger volume analysis and service capacity determination, Introduction to transit service planning, Operational planning process, Service and evaluation standards, Data requirements and collection, Frequency and Headway distributions, Scheduling of service and timetabling.	9
2	Transit Line Capacity: Elements and Computation, Systems approach to transit line capacity, Capacities of different modes, Level Service measures, Speed of Transit Service, Passenger demand: factors and elasticity. Stops and stopping regimes: Definitions and relationships, Practical and optimal values	9

	of stop spacing, Comparison of all-stop, skip-stop, zonal and express/local operations	
3	Transit Lines and Networks: Planning objectives, principles and considerations, Geometry of transit lines, Types of transit lines and their characteristics, Transfers in transit networks, Analysis of metro network geometric forms, Transit System Statistics, Route choice and assignment	9
4	Introduction to Network design and service design, Performance and Economic Measures: Revenues, costs and operating ratio, Transit Fares: Fare structure and Collection, Costing and cost allocation methods, Modern Approaches in Transit planning: Information System for Passengers, Application of ITS.	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Comprehend the Fundamental Concepts of Public Transit Systems	K2
CO2	Develop and Evaluate Transit Service and Operational Plans	К3
CO3	Plan and Analyze Transit Lines and Networks	К3
CO4	Measure and analyze performance and economic aspects of Transit Systems	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1				3						3
CO2	1	1				3						3
CO3	1					3						3
CO4	1					3						3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Public Transit Planning and Operation: Theory, Modelling and Practise,	Ceder, Avishai	Elsevier, Oxford, UK	2007			
2	Public Transport: Its Planning, Management and Operation	White, Peter	Taylor & Francis, London.	2008			
3	Urban Transit: Operations, Planning and Economics	Vuchic, Vukan R.	Wiley, New Jersy.	2005			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Transportation Engineering— An Introduction	Khisty, C J.	Prentice-Hall, New Jersy	2002			
2	Transit Capacity and Quality of Service Manual	Transit Cooperative Research Program	Transportation Research Board, Washington,D.C	2013			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://onlinecourses.nptel.ac.in/noc22_ce70					

SEMESTER S8

FUNDAMENTALS OF BUILDING PLANNING

Course Code	OECET834	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/	Course Type	Theory

Course Objectives:

1. To enable students to develop creative and sustainable building design

Module No.	Syllabus Description				
1	Definition of architecture –Historical development of architecture. Principles of architectural composition – Unity/ harmony – character– balance – proportion – scale –rhythm — Accentuation and contrast. Organising principles in architecture – Symmetry – hierarchy – axis – linear – concentric, radial – and asymmetric grouping – primary and secondary masses. Form and Space in architecture – Positive and negative space – Defining space with horizontal and vertical elements -qualities of architectural space Architecture Design Process: The 7 phases: The pre-design phase: The schematic design phase: The design development phase: The construction documents phase: The building permit phase: The bidding and negotiation phase: The construction administration phase.				
2	Acoustics, fundamentals: Intensity of sound- Watts/m2- Bel- Decibel scales-dBA-Phon. Addition of sound levels. Acoustical Defects- Echoes, Reverberation, Foci and Dead Spots, Loudness, Noise				

	Sound absorption-materials and fixings.	
	Natural lighting: Visual task requirements, Units of Light, Light, Vision and Buildings, Standards of Lighting and Visual comfort-The sky as a source of light, Daylight factor, Recommended daylight factors for interiors.	
	Thermal comfort: Factors affecting thermal comfort- effective Temperature	
	Thermal comfort indices-ET-CET Charts- Bioclimatic chart- Psychrometry and Psycrometric chart.	
3	Earth-Sun relationship: Sun's apparent movement with respect to the earth. Solar angles	
	Thermal design of buildings: Thermo physical properties of building materials and thermal control	
	Functional protection: Causes of fire, Mechanism of fire spread in buildings, classification of fire-High temperature effects and combustibility of building materials and structure	
4	Architecture Design aspect: basic anthropometrics- human functions and their implications for space requirements- movement and circulation diagrams-special interpretations- various activities and their relationship with spaces	
7	Energy efficiency in buildings – Energy assessment in buildings – Green building rating guidelines	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
CO1	Use principles of architectural composition and organization for development of building form and planning of functional spaces in buildings.	К3		
CO2	Show good understanding of the comprehensive architectural design process, from the pre-design stage to construction management.	К3		
CO3	Adopt principles of acoustics and lighting for efficient functional design of buildings.	К3		
CO4	Show good understanding of fire protection methods for efficient and safe function of buildings.	К3		
CO5	Apply climate conscious architectural principles for creating energy efficient buildings.	К3		

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1										2
CO2	2	1										2
CO3	2	1					2					2
CO4	2	1										2
CO5	3	2					2					2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	A global history of architecture	Francis D. K. Ching , Mark M. Jarzombek , Vikramaditya Prakash	Wiley	3 rd edition 2017			
2	Architecture: Form, Space, and Order	Francis D. K. Ching	Wiley	5 th edition 2023			
3	Architecture And Town Planning	Satish Chandra Agarwala	Dhanpath Rai &Co	2018			
4	Architectural Engineering Design: Mechanical Systems	Robert Butler Brown	Mc Graw Hill	1 st edition			
5	Building Services Engineering	David Chadderton	T&F India	6 th Edition 2017			
6	Architectural Acoustics	Marshall Long	Academic Press	2014			
7	Lighting	Pritchard, D.C	Longman Scientific & Technical, Harlow	1995			
8	Daylight in Architecture	Benjamin Evans	McGraw - Hill Book Company	1981			
9	Building Environment	AjithaSimha.D	Tata McGraw Hill Publishing Co	1985			

10	Design and Installation of Services in Building complexes & High Rise Buildings	Jain. V.K.,	Khanna Tech. Publishers	1986
11	A text book of Vastuvidya	A. Achyuthan, Balagopal. T.S. Prabhu	Vastuvidyaparatishthanam	1996
12	Manual of tropical Housing and Building Part I – Climatic design	Koenigseberger	Orient Longman	2011

		Reference Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Architecture: From Prehistory to Climate Emergency	Barnabas Calder	Pelican	2021		
2	Building construction illustrated	Francis D. K. Ching	Wiley	6 th edition 2017		
3	Architectural Engineering Design: Mechanical Systems	Robert Butler Brown	Mc Graw Hill	1 st edition		
4	Acoustical Design in Architecture	Knudsen V.O. and Harris C.M	John Wiley	1980		
5	Energy Efficient Buildings: Architecture, Engineering, and Environment	Wayne Forster and Dean Hawkes	W.W. Norton Company Inc	2002		
6	Bureau of Indian standards, Hand 1987	dbook on Functional Require	ement of Buildings – SP:	41(S and T)-		
7	National Building Code of India	(latest revisions to be refer	red)			
8	8 Bureau of Energy Efficiency, India. Design Guidelines for Energy Efficient Multi-Storey Buildings,2014.					

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/124/107/124107005/ https://nptel.ac.in/courses/124107012				
2	https://archive.nptel.ac.in/courses/105/102/105102175/				
3	https://archive.nptel.ac.in/courses/105/107/105107156/				
4	https://nptel.ac.in/courses/101104065 https://archive.nptel.ac.in/noc/courses/noc22/SEM1/noc22-ar03/				

HYDROGEOLOGY

Course Code	OECET835	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PECET416	Course Type	Theory

Course Objectives:

- 1. Understand Groundwater Origin and Occurrence: Gain foundational knowledge necessary for advanced hydrogeological studies.
- **2.** Identify Geologic Structures Favourable to Groundwater Movement: Learn to describe and assess structures that influence groundwater availability and flow.
- **3.** Apply Groundwater Exploration Principles: Develop practical skills for locating water resources and evaluating groundwater quality.
- **4.** Analyse Groundwater Conditions Across Different Terrains: Formulate strategies for managing and protecting groundwater resources.
- **5.** Overview of Groundwater Impacts on Civil Engineering Structures: Understand how groundwater affects civil engineering projects and structures.

Module No.	Syllabus Description			
1	Groundwater- origin and occurrence. Hydrological cycle. Geologic structures favouring groundwater occurrence and movement. Vertical distribution of groundwater. Water table. Groundwater reservoirs – aquifer, aquiclude, aquifuge and aquitard. Types of aquifers– unconfined, confined, leaky and bounded aquifers – artesian aquifers; springs and their types. Hydrological	9		

	characteristics of aquifers and aquifer properties: Porosity, Permeability, Void	
	Ratio, Specific Yield and Specific Retention – Aquifer parameters– Hydraulic	
	conductivity, Transmissivity and Storativity. Hydraulic Conductivity	
	determination - Lab tests - Permeameter methods and Field tests - Auger	
	Hole test, Tracer test and Pump test	
	Groundwater exploration- Remote sensing and GIS applications. Geophysical	
	methods of groundwater exploration: Principles of electrical resistivity	
	method- Wenner and Schlumberger methods. Subsurface investigations- test	
2	drilling, resistivity logging, SP logging, radiation logging- brief description.	9
_	Groundwater movement – Water table and Piezometric level (surface) –	
	Theory of groundwater flow – Darcy's law and its experimental verification –	
	differential equation governing groundwater flow. Groundwater level	
	fluctuations	
	Well design criteria. Water wells— types of wells. Methods for drilling deep	
	wells. Quality of groundwater-domestic, irrigation and industrial &	
	construction purpose. Chemical characteristics of groundwater – Graphical	
2	representation of water quality data: Interpretation of hydrochemical analysis	0
3	data: Hill-Piper Trilinear diagram, Durov's diagram and U. S. Salinity	9
	diagram – Sodium Adsorption Ratio (SAR). WHO, BIS and ISI water quality	
	standards. Biological health of groundwater	
	Saline water intrusion in coastal and other aquifers and its prevention.	
	Ghyben-Herzberg relationship- methods and need for artificial recharge to	
	aquifers. Groundwater management. Groundwater development- safe yield	
4	and optimal mining policy. Relation between geomorphology of a terrain and	9
	its hydrogeological condition. Problems created by groundwater in the	
	construction phase of mega civil engineering projects. Groundwater provinces	
	of India. Groundwater conditions in Kerala	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	A Part B	
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)			
CO1	CO1 A comprehensive understanding of the origin, occurrence and storage of groundwater			
CO2	Identify and describe geologic structures that favour groundwater occurrence and movement, including the vertical distribution of groundwater and water table dynamics	K2		
CO3	Apply the principles of geospatial and geophysical methods for ground water exploration	К3		
CO4	Evaluate the quality of groundwater for human consumption, irrigation and industrial & construction purpose.	К3		
CO5	Evaluate the groundwater conditions across various terrains and assess the level of groundwater contamination for formulating approaches for groundwater conservation	К3		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3	2										2
CO3	3	2	2									1
CO4	3					2	2					1
CO5	3	2				2	3					1

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Groundwater Hydrology	Bouwer,	McGraw-Hill	1978.					
2	Hydrogeology	Davis, S.N. and Dewiest, R.J.N.	John Wiley and Sons Inc. New York,	1966.					
3	Hydrogeology, Principle and Practice	Kevin M. Hiscock, Victor F. Bense	Wiley	2021					
4	Groundwater geophysics,	Krisch R	Springer - Verlag	2008					
5	Groundwater	Reghunath,	Wiley Eastern Limited.	3 rd Edn. 2007					

	Reference Texts							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Hydrogeology: Groundwater Science and Engineering	Alain Dassargues	CRC Press	2018				
2	Introduction to Hydrogeology Unesco-IHE Delft Lecture Note Series	J.C. Nonner, Johannes Nonner	CRC Press	2010				